在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
无基础人员转行做机器学习可以吗?机器学习需要一定数学基础,没有相关的了解需要重新学习。转行机器学习不适用所有人,可不可以转行需要具体结合自身的情况。入门机器学习有一定的门槛要慎重决定。
任何机器学习系统的关键部分就是数据。考虑到额外的算法、巧妙的编程和大量的更精确的数据的选择。
什么是机器学习?机器学习是人工智能的一个子集,即用机器去学习以前的经验。与传统的编程不同,开发人员需要预测每一个潜在的条件进行编程,一个机器学习的解决方案可以有效地基于数据来适应输出的结果。
一个机器学习的算法并没有真正地编写代码,但建立了一个关于真实世界的计算机模型,然后通过数据训练模型。
机器学习原理:垃圾邮件过滤是一个很好的例子,它利用机器学习技术来学习如何从数百万封邮件中识别垃圾邮件,其中就用到了统计学技术。
例:如果每100个电子邮件中的85个,其中包括“便宜”和“伟哥”这两个词的邮件被认为是垃圾邮件,我们可以说有85%的概率,确定它是垃圾邮件。并通过其它几个指标(例如,从来没给你发送过邮件的人)结合起来,利用数十亿个电子邮件进行算法测试,随着训练次数不断增加来提升准确率。
深度学习并不等于人工智能,它只是一种算法,和普通的机器学习算法一样,是解决问题的一种方法。真要区分起来,人工智能、机器学习和深度学习,三者大概是下图这种关系。人工智能是一个很大的概念,机器学习是其中的一个子集,而深度学习又是机器学习的一个子集。
深度学习不是什么新技术,深度学习的概念源于人工神经网络的研究,早在上世纪 40 年代,通用计算机问世之前,科学家就提出了人工神经网络的概念。而那个时候的计算机刚刚开始发展,速度非常慢,最简单的网络也得数天才能训练完毕,效率极其低下,因此在接下来的十几年都没有被大量使用。近些年,随着算力的提升,GPU、TPU 的应用,神经网络得到了重大发展。
同机器学习方法一样,深度学习方法也有监督学习与无监督学习之分。例如,卷积神经网络(Convolutional Neural Networks,简称 CNN)就是一种深度的监督学习下的机器学习模型,而深度置信网络(Deep Belief Nets,简称 DBN)就是一种无监督学习下的机器学习模型。深度学习的”深度“是指从”输入层“到”输出层“所经历层次的数目,即”隐藏层“的层数,层数越多,深度也越深。
所以越是复杂的选择问题,越需要深度的层次多。除了层数多外,每层”神经元“-小圆圈的数目也要多。例如,AlphaGo 的策略网络是 13 层,每一层的神经元数量为 192 个。深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
如何通过云计算大数据在线培训视频学习项目实战经验?
目前通过参加云计算大数据培训是成为进入大数据行业的重要途径之一。而对于时间并不充裕或者无法脱产学习以及异地学习的朋友而言,更多的选择云计算大数据在线培训的方式学习。那如果通过云计算大数据在线培训视频学习项目实战经验呢?
7293
2019-08-06 19:00:46
数据能力如何体现数据价值?
数据资产的价值分两部分:数据资产直接变现的价值;通过数据资产作为资源加工后提供数据服务的业务价值。底层数据加工计算所涉及到的传输效率,决定了支撑数据产品高性能、高可靠的自身需求;应用层的传输影响了用户体验和场景实现。
6389
2020-02-13 16:45:17
Flink电商项目实战介绍
随着Flink技术的飞速发展,Flink在实时处理数据方面体现出越来越显著的优势。Flink作为一个针对流数据和批数据的分布式处理引擎,其应用领域越来越广泛。本文将向大家介绍Flink电商项目实战教程,感兴趣的话就一起接着看下去吧~
5190
2020-05-11 14:58:14
HDFS基本原理总结
今天继续梳理的知识点是HDFS的基本原理,主要内容包括NameNode概述、DataNode概述、HDFS的工作机制(HDFS写数据流程和HDFS读数据流程),总之全文都是总结的学习干货,希望对于相信大数据的朋友能够有一些帮助,下面我们一起来学习并理解以下的内容吧!
4792
2020-06-15 10:48:02
大数据批流处理之Lambda架构学习
大数据批流处理之Lambda架构,Lambda架构是当前大数据中批流处理方向影响最为深刻、应用最为广泛的架构。对于在云端的数据中心实现针对海量历史数据的批量计算及优化需要分别在云端、边缘端实现针对流数据的实时处理的场景。
3045
2022-03-02 10:17:27