在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
对于大数据的学习者来讲,深入理解数据仓库是很重要的。本文将对数据仓库的基本概念进行讲解,大家可以在看完数据仓库的概念、主要特征以及分层架构之后,真正理解数据仓库是什么。
1、数据仓库的概念
数据仓库,全称是Data Warehouse,简写DWH。数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持。它出于分析性报告和决策支持目的而创建。正因为它叫 “仓库”,而不是叫“工厂”。所以数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据。数据来源于外部,并且开放给外部应用。
2、数据仓库的主要特征
(1)面向主题
传统数据库中,最大的特点是面向应用进行数据的组织,各个业务系统可能是相互分离的。而数据仓库则是面向主题的。主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。
(2)集成性
通过对分散、独立、异构的数据库数据进行抽取、清理、转换和汇总便得到了数据仓库的数据,这样保证了数据仓库内的数据关于整个企业的一致性。数据仓库中的综合数据不能从原有的数据库系统直接得到。因此在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键、最复杂的一步。
(4)时变性
数据仓库包含各种粒度的历史数据。数据仓库中的数据可能与某个特定日期、星期、月份、季度或者年份有关。数据仓库的目的是通过分析企业过去一段时间业务的经营状况,挖掘其中隐藏的模式。虽然数据仓库的用户不能修改数据,但并不是说数据仓库的数据是永远不变的。分析的结果只能反映过去的情况,当业务变化后,挖掘出的模式会失去时效性。因此数据仓库的数据需要更新,以适应决策的需要。从这个角度讲,数据仓库建设是一个项目,更是一个过程。
3、数据仓库分层架构
按照数据流入流出的过程,数据仓库架构可分为三层——源数据、数据仓库、数据应用。数据仓库的数据来源于不同的源数据,并提供多样的数据应用,数据自下而上流入数据仓库后向上层开放应用,而数据仓库只是中间集成化数据管理的一个平台。
(1)源数据层(ODS):此层数据无任何更改,直接沿用外围系统数据结构和数据,不对外开放;为临时存储层,是接口数据的临时存储区域,为后一步的数据处理做准备。
(2)数据仓库层(DW):也称为细节层,DW层的数据应该是一致的、准确的、干净的数据,即对源系统数据进行了清洗(去除了杂质)后的数据。
(3)数据应用层(DA或APP):前端应用直接读取的数据源;根据报表、专题分析需求而计算生成的数据。
以上就是数据仓库是什么的基本概念讲解,想要了解更多关于大数据的干货内容,尽在博学谷资讯大数据栏目~
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
Hive数据仓库层级划分介绍
本文就Hive数据仓库层级划分进行详细介绍,全文大概分为数据仓库的四个操作和四逻辑架构层次两个部分。这些都是Hive数据仓库的基础知识,大家一定要掌握哦!
10692
2019-08-09 19:31:31
IT就业专业为什么要选择大数据技术应用?
IT就业专业为什么要选择大数据技术应用?目前大数据领域从业人员的薪资高涨幅空间大,大数据人才供不应求。各大数据开发方向,数据挖掘、数据分析和机器学习方向,大数据运维和云计算方向。
6886
2019-09-03 14:47:48
哪里有比较好的大数据分析培训?
目前大部分关于大数据方向的培训课程都是关于大数据技术开发,主要培养与大数据挖掘、大数据爬虫、大数据存储以及算法开发工程师,相对来说说岗位偏向于开发技术。对于不想从事技术开发岗位的同学,关注更多的则是大数据分析培训课程。那目前国内哪里有比较好的大数据分析培训呢?
5696
2019-09-03 18:47:35
用户画像在电商中的价值和作用分析
在了解用户画像在电商行业的应用之前,我们首先要清楚什么是用户画像。简单来说,用户画像就是把用户的信息进行标签化,从而提供给企业和公司。在当下这个大数据时代,各个企业公司早就把用户画像,作为重要的经营战略调整依据。因此,用户画像在电商中的价值和作用不言而喻。下面就为大家着重讲讲用户画像的定义、作用和价值。
8251
2019-12-16 17:11:05
常用的数据分析方法及案例讲解
常用的数据分析方法有描述统计、信度分析、相关分析、回归分析、聚类分析等。本文将结合实际案例,为大家一一讲解这些数据分析的方法。如果你想了解如何做数据分析,就接着看下去吧~
5119
2020-08-13 16:38:58