在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
数据处理的工作时间占据了整个数据分析项目的70%以上。因此,数据的质量直接决定了分析模型的准确性。那么,数据预处理的方法有哪些呢?比如数据清洗、数据集成、数据规约、数据变换等,其中最常用到的是数据清洗与数据集成,下面小编将来详细介绍一下这2种方法。
1、数据清洗
数据清洗是通过填补缺失值,平滑或删除离群点,纠正数据的不一致来达到清洗的目的。简单来说,就是把数据里面哪些缺胳膊腿的数据、有问题的数据给处理掉。总的来讲,数据清洗是一项繁重的任务,需要根据数据的准确性、完整性、一致性、时效性、可信性和解释性来考察数据,从而得到标准的、干净的、连续的数据。
(1)缺失值处理
实际获取信息和数据的过程中,会存在各类的原因导致数据丢失和空缺。针对这些缺失值,会基于变量的分布特性和变量的重要性采用不同的方法。若变量的缺失率较高(大于80%),覆盖率较低,且重要性较低,可以直接将变量删除,这种方法被称为删除变量;若缺失率较低(小于95%)且重要性较低,则根据数据分布的情况用基本统计量填充(最大值、最小值、均值、中位数、众数)进行填充,这种方法被称为缺失值填充。对于缺失的数据,一般根据缺失率来决定“删”还是“补”。
(2)离群点处理
离群点(异常值)是数据分布的常态,处于特定分布区域或范围之外的数据通常被定义为异常或噪声。我们常用的方法是删除离群点。
(3)不一致数据处理
实际数据生产过程中,由于一些人为因素或者其他原因,记录的数据可能存在不一致的情况,需要对这些不一致数据在分析前进行清理。例如,数据输入时的错误可通过和原始记录对比进行更正,知识工程工具也可以用来检测违反规则的数据。
2、数据集成
随着大数据的出现,我们的数据源越来越多,数据分析任务多半涉及将多个数据源数据进行合并。数据集成是指将多个数据源中的数据结合、进行一致存放的数据存储,这些源可能包括多个数据库或数据文件。在数据集成的过程中,会遇到一些问题,比如表述不一致,数据冗余等,针对不同的问题,下面简单介绍一下该如何处理。
(1)实体识别问题
在匹配来自多个不同信息源的现实世界实体时,如果两个不同数据库中的不同字段名指向同一实体,数据分析者或计算机需要把两个字段名改为一致,避免模式集成时产生的错误。
(2)冗余问题
冗余是在数据集成中常见的一个问题,如果一个属性能由另一个或另一组属性“导出”,则此属性可能是冗余的。
(3)数据值的冲突和处理
不同数据源,在统一合并时,需要保持规范化,如果遇到有重复的,要去重。
本文介绍了两种最常见的数据预处理方法,实际操作中,我们拿到的数据可能包含了大量的缺失值、异常点等,非常不利于数据分析。这时需要我们对脏数据进行预处理,得到标准的、干净的、连续的数据,提供给数据分析、数据挖掘等使用。希望大家通过本文能对数据预处理有一个简单的了解,在数据处理时,能根据具体遇到的问题采取相应的方法。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据笔记之分布式文件存储系统
现在是大数据的时代,也是数据爆炸的时代,如何处理大数据的存储成为了摆在人们面前的难题,因此分布式文件存储系统应用而生。同时分布式文件存储系统在大数据面试中,也是一个常常可以见到的考点之一。本文为大家梳理了相关的大数据知识点,感兴趣的小伙伴可以看一看。
6540
2019-11-05 16:26:09
如何安装Kafka?新手安装教程指导
Kafka是由Java编写的一个开源流处理平台,因为它强大的动作流数据处理功能而备受大数据开发者的欢迎。因而作为大数据的开发者,掌握Kafka也就掌握了大数据最重要的一项核心技术。本文是一篇新手入门Kafka的安装教程,下面小编将手把手结合图片详细的指导大家安装Kafka。
4331
2020-02-17 14:41:36
大数据的定义和概念是什么?一文带你认识大数据
如今,大数据无处不在,它被广泛地应用到各个领域中。似乎我们对大数据已经并不陌生了,但是关于大数据的定义和概念,相信没几个人能够说清楚。那么,当我们在谈大数据的时候到底在谈什么呢?本文就来用一篇文章带大家彻底认识大数据,包括大数据的定义、特点、应用场景以及和云计算的关系。下面就一起来看看吧!
23763
2020-05-14 16:25:29
Hadoop集群动态扩容讲解
今天本文要讲解的是Hadoop集群动态扩容的内容,那么什么是动态扩容呢?数据量随着公司业务的增长越来越大,原有的datanode节点的容量,已经不能满足存储数据的需求,需要在原有集群基础上,动态添加新的数据节点,这就是我们说的动态扩容。下面一起来看看基础准备、添加datanode、datanode负载均衡服务、添加nodemanager等相关内容吧~
6681
2020-06-08 10:56:55
无基础人员转行做机器学习可以吗?
机器学习需要一定数学基础,没有相关的了解需要重新学习。转行机器学习不适用所有人,可不可以转行需要具体结合自身的情况。入门机器学习有一定的门槛要慎重决定。
4298
2020-10-23 14:55:11