在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
数据处理的工作时间占据了整个数据分析项目的70%以上。因此,数据的质量直接决定了分析模型的准确性。那么,数据预处理的方法有哪些呢?比如数据清洗、数据集成、数据规约、数据变换等,其中最常用到的是数据清洗与数据集成,下面小编将来详细介绍一下这2种方法。
1、数据清洗
数据清洗是通过填补缺失值,平滑或删除离群点,纠正数据的不一致来达到清洗的目的。简单来说,就是把数据里面哪些缺胳膊腿的数据、有问题的数据给处理掉。总的来讲,数据清洗是一项繁重的任务,需要根据数据的准确性、完整性、一致性、时效性、可信性和解释性来考察数据,从而得到标准的、干净的、连续的数据。
(1)缺失值处理
实际获取信息和数据的过程中,会存在各类的原因导致数据丢失和空缺。针对这些缺失值,会基于变量的分布特性和变量的重要性采用不同的方法。若变量的缺失率较高(大于80%),覆盖率较低,且重要性较低,可以直接将变量删除,这种方法被称为删除变量;若缺失率较低(小于95%)且重要性较低,则根据数据分布的情况用基本统计量填充(最大值、最小值、均值、中位数、众数)进行填充,这种方法被称为缺失值填充。对于缺失的数据,一般根据缺失率来决定“删”还是“补”。
(2)离群点处理
离群点(异常值)是数据分布的常态,处于特定分布区域或范围之外的数据通常被定义为异常或噪声。我们常用的方法是删除离群点。
(3)不一致数据处理
实际数据生产过程中,由于一些人为因素或者其他原因,记录的数据可能存在不一致的情况,需要对这些不一致数据在分析前进行清理。例如,数据输入时的错误可通过和原始记录对比进行更正,知识工程工具也可以用来检测违反规则的数据。
2、数据集成
随着大数据的出现,我们的数据源越来越多,数据分析任务多半涉及将多个数据源数据进行合并。数据集成是指将多个数据源中的数据结合、进行一致存放的数据存储,这些源可能包括多个数据库或数据文件。在数据集成的过程中,会遇到一些问题,比如表述不一致,数据冗余等,针对不同的问题,下面简单介绍一下该如何处理。
(1)实体识别问题
在匹配来自多个不同信息源的现实世界实体时,如果两个不同数据库中的不同字段名指向同一实体,数据分析者或计算机需要把两个字段名改为一致,避免模式集成时产生的错误。
(2)冗余问题
冗余是在数据集成中常见的一个问题,如果一个属性能由另一个或另一组属性“导出”,则此属性可能是冗余的。
(3)数据值的冲突和处理
不同数据源,在统一合并时,需要保持规范化,如果遇到有重复的,要去重。
本文介绍了两种最常见的数据预处理方法,实际操作中,我们拿到的数据可能包含了大量的缺失值、异常点等,非常不利于数据分析。这时需要我们对脏数据进行预处理,得到标准的、干净的、连续的数据,提供给数据分析、数据挖掘等使用。希望大家通过本文能对数据预处理有一个简单的了解,在数据处理时,能根据具体遇到的问题采取相应的方法。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
ETL工程师是干什么的?ETL工程师工作内容介绍
随着大数据时代的来临,ETL工程师逐渐出现在大众的视野中,那么ETL工程师是干什么的呢?直白一点说,ETL工程师又叫数据库工程师,需要掌握各种流行的编程语言,每天的工作就是和数据库打交道,下面详细介绍一下ETL工程师的工作内容,以便于大家进一步了解这个职业。
59325
2019-09-15 12:34:13
什么是Hive?为什么要用Hive?
Hive是建立在Hadoop上的数据仓库基础构架。对于有一定基础的大数据学习者来讲,Hive是必须掌握的核心技术。本文主要带大家来认识一下Hive,了解什么是Hive?为什么要用Hive?如果大家对这些问题好奇,就一起看看接下来的内容吧~
10504
2020-06-03 18:08:30
元数据是什么?它有什么用?
在大家接触到数据仓库管理系统的学习之后,有一个绕不开的知识点就是元数据。那么,元数据是什么?它有什么用呢?简单来讲,元数据就是描述数据的数据,它的作用就是维护数据仓库。如果大家还不明白,可以看看下面更加具体的解释~
8190
2020-06-05 15:36:25
数据挖掘的步骤有哪些?
所谓数据挖掘就是从海量的数据中,找到隐藏在数据里有价值的信息。因为这个数据是隐式的,因此想要挖掘出来并不简单。那么,如何进行数据挖掘呢?数据挖掘的步骤有哪些呢?一般来讲,数据挖掘需要经历数据收集、数据可视化、数据预处理、准备模型输入以及训练模型五大步骤,下面让我们来详细分析一下吧!
6192
2020-08-10 15:32:38
2022年数据与分析有哪些新趋势?关注哪些动态?
今年数据和分析主要趋势:激活多样性和活力使用自适应AI系统推动增长和创新同时应对全球市场的波动;增强人员能力和决策以提供由业务模块化组件创建的丰富的、情境驱动的分析;将信任制度化以大规模地实现数据和分析的价值。管理AI风险并实施跨分布式系统、边缘环境和新兴生态系统的互联治理。
3032
2022-04-27 15:53:36