• 在线客服

  • 扫描二维码
    下载博学谷APP

  • 扫描二维码
    关注博学谷微信公众号

  • 意见反馈

原创 什么是图神经网络?三分钟带你解读

发布时间:2020-04-21 16:55:52 浏览 8205 来源:博学谷 作者:照照

    深度学习是近几年人工智能领域的核心技术,随着它的不断深入发展,才有了人工智能今天的崛起和落地应用。谈到深度学习,就不得不提图神经网络(GNN),毕竟图神经网络正是深度学习技术的根本和基础。下面小编将用三分钟带你解读图神经网络,主要内容包括图神经网络的定义、兴起和用途,赶紧来一起看看吧~

     

    解读图神经网络

     

    1、图神经网络的定义

     

    GNN全名图神经网络,这里的G是是图(Graph)的意思,GNN之所以重要,是因为图很重要。图是计算机科学里的一种非常重要的数据结构,计算机科学有一门必修的基础课叫“离散数学”,听名字像是某一条数学分支,不过究竟“离散数学”的边界在哪里,现在还没有一个统一的定论。但有一个知识点,所有版本的《离散数学》教材都不会错过,那就是“图论”,讨论一种叫“图”的数据结构。而GNN里的“图”,正是指图论的“图”。

     

    那么究竟什么是“图”?就两样,顶点(Vertex)和边(Edge)。所谓的顶点,就是网络拓扑图里面的节点,譬如网络拓扑图里的PC机、服务器和路由器等等,而所谓的边,就是连接这些网络节点的线。所以图的应用非常广,网络拓扑图就是一种非常典型的图结构。

     

    2、图神经网络的兴起

     

    图神经网络的出现实质上是一门新技术的兴起,那为什么要推出这款新技术呢?推出一款新技术,潜台词就是说原有技术存在不足,下面我们可以看看CNNRNN存在的不足。说白了就是数据结构,模型是要喂数据的,这我们都知道。但现有的深度学习模型,无论是CNN,还是RNN,或者叫其他什么的,都对数据的数据结构有一个要求,必须都是欧几里得结构。长得方方正正的就是欧几里得结构,军训的阅兵方阵,横向纵向都是一个人紧挨着一个人,这就是典型的欧几里得结构。而图是非欧几里得结构,所以没有办法用传统的深度模型处理的。因此,研究人员开发了图神经网络。

     

    3、图神经网络的用途

     

    近几年,深度学习带来了人脸识别、语音助手以及机器翻译的成功应用。这三类场景的背后分别代表了三类数据:图像、语音和文本。深度学习在这三类场景中取得突破的关键是它背后的端对端学习机制。另外,业界认为大规模图神经网络是认知智能计算强有力的推理方法。图神经网络将深度神经网络从处理传统非结构化数据推广到更高层次的结构化数据。不仅如此,图还具有很强的语义可视化能力,这种优势被所有的 GNN 模型所共享。比如在异常交易账户识别的场景中,GNN 在将某个账户判断为异常账户之后,可以将该账户的局部子图可视化出来。

     

    近些年来,图神经网络的兴起与用途成功推动了人工智能在模式识别和数据挖掘的研究。如果大家对于图神经网络还有学习的兴趣,不妨上博学谷进行相关视频课程的学习,上面有对图神经网络更为深刻和详细的解读!

    申请免费试学名额    

在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!

上一篇: 人工智能专业学什么?学完可以干什么? 下一篇: 如何提高人工智能开发效率?

相关推荐 更多

热门文章

  • 前端是什么
  • 前端开发的工作职责
  • 前端开发需要会什么?先掌握这三大核心关键技术
  • 前端开发的工作方向有哪些?
  • 简历加分-4步写出HR想要的简历
  • 程序员如何突击面试?两大招带你拿下面试官
  • 程序员面试技巧
  • 架构师的厉害之处竟然是这……
  • 架构师书籍推荐
  • 懂了这些,才能成为架构师
  • 查看更多

扫描二维码,了解更多信息

博学谷二维码