在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
众所周知,Spark作为一个集群计算平台和内存计算系统,它是专门为速度和通用目标设计的。从事大数据岗位的工作者,像是ETL工程师、Spark工程师、Hbase工程师、用户画像系统工程师都需要熟练掌握Spark相关知识点,因此Spark也是常常会出现的必考面试题。下面我整理了一些Spark面试题,并附上了答案,一起来看看做一做吧!
面试题1:Spark 运行架构的特点是什么?
答案:每个 Application 获取专属的 executor 进程,该进程在 Application 期间一直驻留,并以多线程方式运行 tasks。Spark 任务与资源管理器无关,只要能够获取 executor 进程,并能保持相互通信就可以了。提交 SparkContext 的 Client 应该靠近 Worker 节点(运行 Executor 的节点),最好是在同一个 Rack 里,因为 Spark 程序运行过程中 SparkContext 和Executor 之间有大量的信息交换;如果想在远程集群中运行,最好使用 RPC 将SparkContext 提交给集群,不要远离 Worker 运行 SparkContext。Task 采用了数据本地性和推测执行的优化机制。
面试题2:描述一下Spark运行的基本流程。
答案:这个是面试大数据岗位的一道基础题。Spark 运行基本流程可以参考下面的示意图:
面试题3:Spark 中的 RDD 是什么?
答案:RDD(Resilient Distributed Dataset)叫做分布式数据集,是 Spark 中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD 中的数据可以存储在内存或者是磁盘,而且RDD 中的分区是可以改变的。
面试题4:Spark 中的常用算子有哪些区别?
答案:map : 用 于 遍 历 RDD , 将 函 数 f 应 用 于 每 一 个 元 素 , 返 回 新 的
RDD(transformation 算子);foreach:用于遍历 RDD,将函数 f 应用于每一个元素,无返回值(action 算子);mapPartitions:用于遍历操作 RDD 中的每一个分区,返回生成一个新的RDD(transformation 算子);foreachPartition: 用于遍历操作 RDD 中的每一个分区。无返回值(action 算子)。总结的来说,一般使用 mapPartitions 或者 foreachPartition 算子比 map 和 foreach更加高效,推荐使用。
面试题5:spark 中 cache 和 persist 有什么区别?
答案:cache:缓存数据,默认是缓存在内存中,其本质还是调用 persist;persist:缓存数据,有丰富的数据缓存策略。数据可以保存在内存也可以保存在磁盘中,使用的时候指定对应的缓存级别就可以了。
面试题6:如何解决 spark 中的数据倾斜问题?
答案:这也是在大数据岗位上会常常遇到的问题,当我们发现数据倾斜的时候,不要急于提高 executor 的资源,修改参数或是修改程序,首先要检查数据本身,是否存在异常数据。如果是数据问题造成的数据倾斜,找出异常的 key,如果任务长时间卡在最后最后 1 个(几个)任务,首先要对 key 进行抽样分析,判断是哪些 key 造成的。选取 key,对数据进行抽样,统计出现的次数,根据出现次数大小排序取出前几个。
面试题7:谈谈 你对spark中宽窄依赖的认识。
答案:RDD 和它依赖的父 RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。宽依赖指的是多个子 RDD 的 Partition 会依赖同一个父 RDD 的 Partition窄依赖:指的是每一个父 RDD 的 Partition 最多被子 RDD 的一个 Partition使用。
以上就是大数据岗位中常见的Spark面试题整理,大家可以根据附上的答案对Spark的相关知识点进行查漏补缺。如果想要了解更多的大数据面试题,可以上博学谷官网学习大数据的就业班课程,除了面试题整理,课程还包括了各种就业指导内容,欢迎大家试听体验。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
2019年大数据在各行业的应用 深度解析
如今,我们都生活在一个数字化的世界里,大数据的应用也变得越来越广泛,它深度改变着我们的生产生活方式。本文小编就来深度解析一下,2019年大数据在各行业的应用。这些行业都从大数据中获取了当下真正有价值的信息,从而极大地提高了生产效率。
7789
2019-07-22 18:00:56
大数据工资一般多少?大数据职业发展分析
大数据工资一般多少?大数据目前作为朝阳行业,工资普遍较高,不同地区和不同岗位薪资待遇差别也较大。以北京这样的一线城市为例,月薪最低也有七千元,据最新统计,北京大数据工资拿一万左右的人群比例最高。下面小编就来分析一下大数据的职业发展。
17200
2019-08-19 18:46:16
大数据面试题 Spark运行架构
Spark作为一种分布式的计算框架,类似于大数据开发中Hadoop生态圈的MapReduce,计算思想和MR非常相似,两者都是分而治之的思想,但使用率要比MR高很多。本文整理了关于Spark运行架构的大数据面试题,内容包括Spark运行的基本流程、架构特点、优势。
6289
2019-09-05 15:19:35
ETL数据工程师职业发展怎么样?
随着大数据发展的逐渐落地,其技术也被广泛的应用于各个领域,大数据工程师也因此成为了目前最具潜力的热门岗位。说到大数据工程师就不得不提及ETL数据工程师,相信大家对这个职位或多或少都有所了解。但是对于ETL数据工程师的具体工作内容、能力要求和职业发展规划大家又了解多少呢?本文就来和大家好好谈谈ETL数据工程师的这一岗位,希望给想从事这个行业的小伙伴一点方向的指引。
8126
2020-02-25 18:28:52
大数据岗位月薪19K+心动吗?
大数据是一种海量的、高增长率的、多样化的信息资产,它需要新的存储和计算模式才能具有更强的决策力、流程优化能力。IT行业技术发展更新较快,相比较AI和云计算,大数据的技术门槛更低,跟业务的相关性更大。
5029
2020-04-27 17:37:30