在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
在大数据工程师的面试过程中,编程模型的相关问题常常是绕不过去的一个考点。同时编程模型也是大数据工程师工作中非常重要的知识技能。下面就来讲讲Spout、Bolt、并行度、消息不丢失这几方面的内容,感兴趣的小伙伴就赶紧接着看下去吧!
1、Spout
Spout 是接受外部数据源的组件,将外部数据源转化成 Storm 内部的数据, 以 Tuple 为基本的传输单元下发给 Bolt。(Tuple 是 Storm 内部中数据传输的基本单元,里面封装了一个 List 对象,用来保存数据。)
2、Bolt
Bolt 是接受 Spout 发送的数据,或上游的 bolt 的发送的数据。根据业务逻辑进行处理。发送给下一个 Bolt 或者是存储到某种介质上。介质可以是 mongodb 或 mysql,或者其他。
3、并行度
Worker:表示一个进程。
Executor:表示由 worker 启动的线程。
Task:实际执行数据处理的最小工作单元(注意,task 并不是线程)。
并行度的设置:评估上游 kafka 每秒生产的数据量,分析 topic 每个 partition。每秒的数据量,partition 的数据量=SpoutTask 接受数据量SpoutTask 数量=partition 的数量。
Worker 的设置:如果数据量大,worker 的数量等于 spouttask 的数量。
4、消息不丢失
ack 机制即, spout 发送的每一条消息,在规定的时间内,spout 收到 Acker 的 ack 响应,即认为该 tuple 被后,续 bolt 成功处理。在规定的时间内,没有收到 Acker 的 ack 响应 tuple,就触发 fail 动作, 即认为该 tuple 处理失败,或者收到 Acker 发送的 fail 响应 tuple,也认为失败,触发 fail 动作。通过 Ack 机制,spout 发送出去的每一条消息,都可以确定是被成功处理或失败处理, 从而可以让开发者采取动作。比如在 Meta 中,成功被处理,即可更新偏移量,当失败时,重复发送数据。因此,通过 Ack 机制,很容易做到保证所有数据均被处理,一条都不漏。
以上就是大数据工程师有关编程模型知识点的常见面试题,大家都弄明白了吗?想要了解大数据工程师更多的面试问题,可以来博学谷官网体验大数据就业指导课程。认真学完一套就业指导课程,一定能够帮助大家从众多面试者中脱颖而出。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据工程师面试时需要注意的那些致命判断题
大数据工程师属于IT行业里面的高薪岗位,所以企业在招聘的时候不仅仅要考虑他们的专业技能,还要考察大数据工程师对于问题的判断能力,从而保障项目的高效率执行。所以和大家分享一些大数据工程师面试时需要注意的那些致命判断题。
7373
2019-06-27 18:23:44
大数据Hbase面试宝典(上)
经历了水深火热的大数据学习,终于拨开云雾见天明了,同学们离成功就差了一步,那就是拿到大数据工程师的Offer。本文详细为同学们整理了一份大数据Hbase面试宝典。
7603
2019-07-03 19:05:17
做大数据开发累吗?需不需要加班?
做大数据开发累吗?需不需要加班?首先我们来了解大数据的工作内容,用一句话总结就是分析历史、预测未来、优化选择。总体上看来,大数据开发的工作需要按部就班进行,因此一般不需要加班,但是偶尔也会因为额外的需求增加以及对项目进度的把控而需要加班。不过,就与其它的研发技术岗位比较,大数据开发已经算是比较轻松的工作了。
15862
2019-09-16 10:10:54
大数据分析专家到大数据技术总监如何转型?
大数据分析专家到大数据技术总监如何转型?大数据分析专家偏重对数据分析的能力,而转型成大数据技术总监除了精通数据分析能力还有具备管理能力,可以带团队做项目。
6151
2019-10-24 15:40:08
深度学习工程师必须掌握的神经网络架构
深度学习工程师必须掌握的神经网络架构,神经网络架构分为四大类:标准网络、递归网络、卷积网络、自动编码器。神经网络可以用来可视化的数据包含两部分:每一层神经元的输出,它们对应输入数据在网络中的不同表示每个神经元所学习到的权重,刻画着各个神经元的行为,即如何对输入进行响应的。
5442
2020-07-01 17:34:28