在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
什么是数据科学异常值检测原理?异常值的检测方法有基于统计的方法,基于聚类的方法,以及一些专门检测异常值的方法等。使用pandas,可以直接使用describe()来观察数据的统计性描述,或者简单使用散点图也能很清晰的观察到异常值的存在。
一、数据科学异常值检测前提
数据样本符合标准正态分布,正态分布的核心是中心极限定理即:如果一个事物受到多种因素的影响,不管每个因素本身是什么分布,它们加总后,结果的平均值就是正态分布。如果要符合正态分布则这些因素必须彼此独立,彼此不独立的各项因素会互相加强影响,那么就构不成正态分布。
二、数据科学异常值检测原理
标准正态分布下的曲线为钟型曲线,期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。因此对于一组数据,如果符合正态分布,则可以通过经验法则来检测异常值,同图中可以发现,68.2%的测量值落在μ值处正负一个标准差σ的区间内,95.4%的测量值将落在μ值处正负两个标准差σ的区间内,99.7%的值落在μ值处正负三个标准差σ的区间内。因此,对于一组符合正态分布的数据,如果某个值距离μ值超过三个标准差σ则可以判断这个值属于异常数据。
三、计算步骤
μ值:μ是遵从正态分布的随机变量的均值,由于前提是各种因素对结果的影响为相加,因此μ值的计算可以为样本数据的算术平均值。
标准差σ:所有数据减去其平均值的平方和,所得结果除以该组数之个数N(数据集为总体数据情况,一般用于大数据算法)或者个数N减1(数据集为样本数据情况,认为数据集不是总体数据而是总体数据的一部分,一般用于统计学),再把所得值开根号,所得之数就是这组数据的标准差。
判断逻辑:计算μ+3σ,μ-3σ,当单个数据大于μ+3σ或者小于μ-3σ时,认为此数据为异常值,因为按照经验法则,此数据在数据集的99.7%范围外。
首先理解数据科学异常值检测原理,掌握计算步骤,最终实现对数据科学异常值检测。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
了解前沿技术:大数据经典应用案例分享
目前国内大部分代行的企业已经将大数据充分的运用到原来的业务之中,对于哪些目前还在互联网转型甚至没有实现互联网+转型的企业来说,能否尽快布局大数据成为企业实现快速发展的核心问题。因此我们需要跟多的了解大数据到底都可以做什么。本文为大家分享了部分大数据应用成功案例。对于企业或者开发者都可以从中找到与自己实际工作业务相关的拓展思路。
8558
2019-07-22 16:28:07
大数据Hadoop集群搭建步骤讲解
相信每一个大数据学习者都明白,Hadoop在大数据中的重要地位。Hadoop简称HDFS,它是是大数据的基础,所以大家一定要掌握好Hadoop的相关基础知识。本文主要是详细讲解Hadoop集群的基本概念、搭建步骤及注意事项。
6220
2019-08-22 16:18:16
大数据Apache Hadoop YARN 工作原理介绍
Apache Hadoop YARN是一种新的 Hadoop 资源管理器,通用资源管理系统可为上层应用提供统一的资源管理和调度,引入为集群在利用率、资源统一管理和数据共享等方面具有很强的优势。
4918
2020-04-27 14:27:28
大数据开发为什么要参加系统学习呢?
自从发展大数据产业被写入政府工作报告、BAT高薪聘请专业大数据人才之后,很多小白也开始纷纷转行进入大数据领域。很多的转型者都将参加培训机构看成是自己转型最高效的方式。
3304
2020-12-10 15:31:43
学大数据开发要掌握的基础知识有哪些?
大数据专业包含课程较多难度大对学习者的要求较高,从事大数据相关的岗位有平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘,不同的从业方向需要掌握的技能也不尽相同。
3284
2021-01-15 11:06:11