• 在线客服

  • 扫描二维码
    下载博学谷APP

  • 扫描二维码
    关注博学谷微信公众号

  • 意见反馈

原创 什么是数据科学异常值检测原理?

发布时间:2020-03-20 16:21:07 浏览 6776 来源:博学谷 作者:吾非鱼

      什么是数据科学异常值检测原理?异常值的检测方法有基于统计的方法,基于聚类的方法,以及一些专门检测异常值的方法等。使用pandas,可以直接使用describe()来观察数据的统计性描述,或者简单使用散点图也能很清晰的观察到异常值的存在。

     

    什么是数据科学异常值检测
      一、数据科学异常值检测前提


      数据样本符合标准正态分布,正态分布的核心是中心极限定理即:如果一个事物受到多种因素的影响,不管每个因素本身是什么分布,它们加总后,结果的平均值就是正态分布。如果要符合正态分布则这些因素必须彼此独立,彼此不独立的各项因素会互相加强影响,那么就构不成正态分布。


      二、数据科学异常值检测原理


      标准正态分布下的曲线为钟型曲线,期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。因此对于一组数据,如果符合正态分布,则可以通过经验法则来检测异常值,同图中可以发现,68.2%的测量值落在μ值处正负一个标准差σ的区间内,95.4%的测量值将落在μ值处正负两个标准差σ的区间内,99.7%的值落在μ值处正负三个标准差σ的区间内。因此,对于一组符合正态分布的数据,如果某个值距离μ值超过三个标准差σ则可以判断这个值属于异常数据。

     

    标准正态分布下的曲线为钟型曲线


      三、计算步骤


      μ值:μ是遵从正态分布的随机变量的均值,由于前提是各种因素对结果的影响为相加,因此μ值的计算可以为样本数据的算术平均值。


      标准差σ:所有数据减去其平均值的平方和,所得结果除以该组数之个数N(数据集为总体数据情况,一般用于大数据算法)或者个数N减1(数据集为样本数据情况,认为数据集不是总体数据而是总体数据的一部分,一般用于统计学),再把所得值开根号,所得之数就是这组数据的标准差。

     

    标准差σ  判断逻辑:计算μ+3σ,μ-3σ,当单个数据大于μ+3σ或者小于μ-3σ时,认为此数据为异常值,因为按照经验法则,此数据在数据集的99.7%范围外。


      首先理解数据科学异常值检测原理,掌握计算步骤,最终实现对数据科学异常值检测。

    申请免费试学名额    

在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!

上一篇: 机器学习和数据科学工程师的区别是什么? 下一篇: 常见的数据建模工具有哪些?

相关推荐 更多

热门文章

  • 前端是什么
  • 前端开发的工作职责
  • 前端开发需要会什么?先掌握这三大核心关键技术
  • 前端开发的工作方向有哪些?
  • 简历加分-4步写出HR想要的简历
  • 程序员如何突击面试?两大招带你拿下面试官
  • 程序员面试技巧
  • 架构师的厉害之处竟然是这……
  • 架构师书籍推荐
  • 懂了这些,才能成为架构师
  • 查看更多

扫描二维码,了解更多信息

博学谷二维码