在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
随着大数据时代的来临,ETL工程师逐渐出现在大众的视野中,那么ETL工程师是干什么的呢?直白一点说,ETL工程师又叫数据库工程师,需要掌握各种流行的编程语言,每天的工作就是和数据库打交道,下面详细介绍一下ETL工程师的工作内容,以便于大家进一步了解这个职业。
ETL是什么意思?
ETL中三个字母分别代表的是Extract、Transform、Load,即抽取、转化、加载。数据抽取:从源数据系统抽取目的数据系统需求的数据;数据转换:将从源数据源获取的数据按照业务需求,转换成目的数据源要求的形式,并对错误、不一致的数据进行清洗和加工;数据加载:将转换后的数据装载到目的数据源。
ETL工程师主要干什么?
ETL工程师的主要工作内容有:从事系统编程、数据库编程与设计。ETL原本是作为构建数据仓库的一个环节,负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。因为以前经常是将业务系统的数据取出来放到数仓中,按照星型或雪花型建模。
ELT 的核心思想就是要利用下游数据存储性能大幅提升和机器学习应用的灵活性的优势,在数据流转的过程中不做过于复杂的计算。ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
ETL是数据仓库中的非常重要的一环。它是承前启后的必要的一步。相对于关系数据库,数据仓库技术没有严格的数学理论基础,它更面向实际工程应用。所以从工程应用的角度来考虑,按着物理数据模型的要求加载数据并对数据进行一些系列处理,处理过程与经验直接相关,同时这部分的工作直接关系数据仓库中数据的质量,从而影响到联机分析处理和数据挖掘的结果的质量。
数据仓库是一个独立的数据环境,需要通过抽取过程将数据从联机事务处理环境、外部数据源和脱机的数据存储介质导入到数据仓库中;在技术上,ETL主要涉及到关联、转换、增量、调度和监控等几个方面;数据仓库系统中数据不要求与联机事务处理系统中数据实时同步,所以ETL可以定时进行。但多个ETL的操作时间、顺序和成败对数据仓库中信息的有效性至关重要。
ETL工程师岗位职责:
1、海量数据的ETL开发,抽取成各种数据需求。
2、参与数据仓库架构的设计及开发 。
3、参与数据仓库ETL流程优化及解决ETL相关技术问题。
4、熟悉主流数据库技术,如oracle、Sql server、PostgeSQL等。
5、精通etl架构,有一定的etl开发经验,了解日常作业的部署和调度。
6、会数据etl开发工具,如Datastage,Congos,Kettle等。
以上就是ETL工程师的工作内容介绍,希望大家看完以上的内容,能够大概明白ETL工程师是干什么的。相信依靠着大数据技术,ETL工程师在市场上会越来越吃香,
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
IT就业专业为什么要选择大数据技术应用?
IT就业专业为什么要选择大数据技术应用?目前大数据领域从业人员的薪资高涨幅空间大,大数据人才供不应求。各大数据开发方向,数据挖掘、数据分析和机器学习方向,大数据运维和云计算方向。
7265
2019-09-03 14:47:48
学数据挖掘技术能做哪些工作?可以从事哪些行业?
学数据挖掘技术能做哪些工作?可以从事哪些行业?随着大数据时代的来临,大数据早已渗透我们生活和工作的方方面面。尤其是数据挖掘更是被各行各业广泛应用,像互联网、电商、金融、医疗等等行业对掌握数据挖掘技术的人才更是有着相当优渥的报酬。至于数据挖掘的相关岗位更是选择多多,下面来具体了解一下吧!
9635
2019-10-15 10:29:58
大数据软件学习入门技巧
大数据软件学习入门技巧,一般而言,在进行大数据处理时,会先使用大数据数据库,如 MongoDB、 GBase等。然后利用数据仓库工具,对数据进行清理、转换、处理,得出有价值的数据。接着用数据建模工具建模。最终用大数据工具进行可视化分析。
4389
2020-07-06 15:07:49
IT行业热门高薪岗位大数据人才为何这么火?
IT行业热门高薪岗位大数据人才稀缺,2020年疫情影响全球经济下跌各行业发展受阻,企业对人才的能力要求不断增强,大数据对于疫情防控发挥了重要作用,大数据人才稀缺岗位火爆原因,一个离不开大数据时代的需要,另一个是自身能力符合企业要求,这两点缺一不可。
4462
2020-07-27 11:16:37
无基础人员转行做机器学习可以吗?
机器学习需要一定数学基础,没有相关的了解需要重新学习。转行机器学习不适用所有人,可不可以转行需要具体结合自身的情况。入门机器学习有一定的门槛要慎重决定。
4102
2020-10-23 14:55:11