• 在线客服

  • 扫描二维码
    下载博学谷APP

  • 扫描二维码
    关注博学谷微信公众号

  • 意见反馈

原创 神经网络到底是什么?它有什么用?

发布时间:2019-08-05 17:36:02 浏览 9402 来源:博学谷资讯 作者:照照

    神经网络到底是什么?神经网络用大白话翻译一下就是,当人们从物质上去模拟人脑时,神经网络就诞生了。就目前来说,神经网络已经在很多领域都开始了应用。那么它有什么用呢?本问主要对神经网络的基本概念和作用做一个全面简要的介绍。

     

    神经网络到底是什么

     

    神经网络到底是什么?

     

    神经网络类似人类大脑,是模拟生物神经网络进行信息处理的一种数学模型。它以对大脑的生理研究成果为基础,其目的在于模拟大脑的某些机理与机制,实现一些特定的功能。由一个个神经元组成,每个神经元和多个其他神元连接,形成网状。单个神经元只会解决最简单的问题,但是组合成一个分层的整体,就可以解决复杂问题。

     

    传统的机器学习方法只利用了一层芯片网络,在遇到真正复杂的问题时,处理效率就会变得十分低下。深度学习的最核心理念是通过增加神经网络的层数来提升效率,将复杂的输入数据逐层抽象和简化。也就是说,将复杂的问题分段解决,每一层神经网络就解决每一层的问题,这一层的结果交给下一层进行进一步处理。

     

    有一层神经网络,就可以找到简单的模式;有多层神经网络,就可以找出模式中的模式,如果描述得更数学一点,当下流行的深度神经网络可分为应对具有空间性分布数据的CNN(卷积神经网络)和应对具有时间性分布数据的RNN(递归神经网络,又称为循环神经网络)。

     

    CNN往往用于图像识别,正如上文描述的,网络的第一层被训练成可以完成这平一个“小目标”——识别图像中局部的独立模块,如一个方块、一个三角形,或者一个眼睛。这一层,人类输入大量图片数据的,只为让该层神经可以辨别基本的局部图形“边缘”,即是一个像素旁边没有任何东西。

     

    RNN则往往用于语音识别和自然语言处理,因为语音和语言是一种按照时间分布的数据,下一句的意义和上一句有关。RNNm网络可能记住历史信息。
    深度神经网络大大优化了机器学习的速度,使人工智能技术获得了突破性进展,在此基础上,图像识别、语音识别、机器翻译都取得了长足进步。

     

    神经网络有什么用?

     

    经典人工神经网络本质上是解决两大类问题:分类(Classification)和回归(Regression)。当然现在还有图像分割、数据生成等问题,但经典机器学习中已经讨论过,把图像分割归为分类问题,把数据生成归为回归问题。分类是给不同的数据划定分界,如人脸识别,输入x 是人脸照片,输出y 是人的ID 号,这个值是一个整数。回归问题要解决的是数据拟合,如人脸年龄预测,输入x 同样是人脸照片但输出y 是人的年龄,这个值是一个连续浮点数。

     

    神经网络能像人脑那样进行判断和预测。它不需要输入程序,可以直观地作出答案,也就是说它“看”到什么就能自行作出反应。它能同时接收几种信号并进行处理,而不像目前已有的计算机那样一次只能输入一个信号。

     

    近些年来神经网络在众多领域得到了广泛的运用。在民用应用领域的应用,如语言识别、图像识别与理解、计算机视觉、智能机器人故障检测、实时语言翻译、企业管理、市场分析、决策优化、物资调运、自适应控制、专家系统、智能接口、神经生理学、心理学和认知科学研究等等;在军用应用领域的应用,如雷达、声纳的多目标识别与跟踪,战场管理和决策支持系统,军用机器人控制各种情况、信息的快速录取、分类与查询,导弹的智能引导,保密通信,航天器的姿态控制等。

     

    读完整篇文章,相信大家对“神经网络到底是什么”,已经有了一个大致的了解。而它究竟有什么用呢?除了上文讲的那样,神经网络的发展会走向何处呢?我们唯一可以肯定的是,作为国家最重视的科研活动之一,它未来很有前途不可限量。

    申请免费试学名额    

在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!

上一篇: 人工智能培训学什么?学完能就业吗? 下一篇: 人工智能面试题分享(含答案)

相关推荐 更多

热门文章

  • 前端是什么
  • 前端开发的工作职责
  • 前端开发需要会什么?先掌握这三大核心关键技术
  • 前端开发的工作方向有哪些?
  • 简历加分-4步写出HR想要的简历
  • 程序员如何突击面试?两大招带你拿下面试官
  • 程序员面试技巧
  • 架构师的厉害之处竟然是这……
  • 架构师书籍推荐
  • 懂了这些,才能成为架构师
  • 查看更多

扫描二维码,了解更多信息

博学谷二维码