在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
大数据学习需要掌握很多技术知识点,包括Linux、Zookeeper、Hadoop、Redis、HDFS、MapReduce、Hive、lmpala、Hue、Oozie、Storm、Kafka、Spark、Scala、SparkSQL、Hbase、Flink、机器学习等。今天主要和大家分享一下Hadoop的联邦机制。
一、为什么会出现联邦?
Hadoop 的 NN 所使用的资源受所在服务的物理限制,不能满足实际生产需求。
二、联邦的实现
采用多台 NN 组成联邦。NN 是独立的,NN 之间不需要相互调用。NN 是联合的,同属于一个联邦,所管理的 DN 作为 block 的公共存储。block pool 的概念,每一个 namespace 都有一个 pool,datanodes 会存储集群中所有的 pool,block pool 之间的管理是独立的,一个 namespace 生成一个 blockid 时不需要跟其它 namespace 协调,一个 namenode 的失败也不会影响到 datanode对其它 namenodes 的服务。一个 namespace 和它的 block pool 作为一个管理单元,删除后,对应于datanodes 中的 pool 也会被删除。集群升级时,这个管理单元也独立升级。这里引入 clusterID 来标示集群所有节点。当一个 namenode format 之后,这个 id 生成,集群中其它 namenode 的 format 也用这个 id。
三、主要优点:
命名空间可伸缩性——联合添加命名空间水平扩展。DN 也随着 NN 的加入而得到拓展。
性能——文件系统吞吐量不是受单个Namenode 限制。添加更多的Namenode集群扩展文件系统读/写吞吐量。
隔离——隔离不同类型的程序,一定程度上控制资源的分配
四、配置:
联邦的配置是向后兼容的,允许在不改变任何配置的情况下让当前运行的单节点环境转换成联邦环境。新的配置方案确保了在集群环境中的所有节点的配置文件都是相同的。这里引入了 NameServiceID 概念,作为 namenodes 们的后缀。第一步:配置属性 dfs.nameservices,用于 datanodes 们识别 namenodes。第二步:为每个 namenode 加入这个后缀。
五、操作:
# 创建联邦,不指定 ID 会自动生成
$HADOOP_HOME/bin/hdfs namenode -format [-clusterId <cluster_id>]
# 升级 Hadoop 为集群
$HADOOP_HOME/bin/hdfs start namenode --config $HADOOP_CONF_DIR
-upgrade -clusterId <cluster_ID>
# 扩展已有联邦
$HADOOP_HOME/bin/hdfs dfsadmin -refreshNamenodes
<datanode_host_name>:<datanode_rpc_port>
# 退出联邦
$HADOOP_HOME/sbin/distribute-exclude.sh <exclude_file>
$HADOOP_HOME/sbin/refresh-namenodes.sh
什么是 CDH 下载地址 : http://archive.cloudera.com/cdh5/cdh/5/ CDH (Cloudera's Distribution, including Apache Hadoop),是 Hadoop众多分支中的一种,由 Cloudera 维护,基于稳定版本的 Apache Hadoop 构建,并集成了很多补丁, 可直接用于生产环境。
CDH 的优点: 版本划分清晰
版本更新速度快
支持 Kerberos 安全认证文档清晰
支持多种安装方式(Cloudera Manager、YUM、RPM、Tarball) 什么是 CM Cloudera Manager? 是为了便于在集群中进行 Hadoop
等大数据处理相关的服务安装和监控管理的组件,对集群中主机、Hadoop、Hive、Spark 等服务的安装配置管理做了极大简化。
Cloudera Manager 有四大功能:
(1)管理:对集群进行管理,如添加、删除节点等操作。
(2)监控:监控集群的健康情况,对设置的各种指标和系统运行情况进行全面监控。
(3)诊断:对集群出现的问题进行诊断,对出现的问题给出建议解决方案。
(4)集成:对 hadoop 的多组件进行整合。
以上就是小编整理的大数据面试题:Hadoop的联邦机制。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据技术自学能学会吗?大数据应该如何自学?
大数据本质也是数据,但是又有了新的特征,包括数据来源广、数据格式多样化(结构化数据、非结构化数据、Excel文件、文本文件等)、数据量大(最少也是TB级别的、甚至可能是PB级别)、数据增长速度快等。那大数据技术自学能学会吗?大数据应该如何自学呢?
6275
2019-08-14 10:21:23
大数据面试题 Hive数仓开发的基本流程
数据仓库是面向主题的、集成的、不可更新的、随时间的变化而不断变化的,这些特点决定了数据仓库的系统设计不能采用同开发传统的OLTP数据库一样的设计方法。数据仓库的设计大体上可以分为以下几个步骤:概念模型设计、技术准备工作、逻辑模型设计、物理模型设计、数据仓库生成、数据仓库运行与维护。下面我们来看看Hive数仓开发的基本流程。
10203
2019-07-15 16:07:11
大数据进阶面试题Storm开源软件
在大数据求职者眼中,Storm肯定是一款高效的开源软件,它主要用于解决数据的实时计算和实时的处理等方面的问题。同时Storm也是大数据进阶面试题的重难点,因此小编整理了一些近些年来比较经典常见有关Storm的面试题,希望对大家有用。
6283
2019-08-15 16:41:39
数据分析师获取数据的方式有哪些?
数据分析师工作的第一步就是获取数据,也就是数据采集。获取数据的方式有很多,本文将着重介绍一下数据分析中的数据来源。一般来讲,数据来源主要分为两大类,企业外部来源和内部来源。其中外部来源包括外部购买、网络爬取、免费开源数据等,内部数据来源包括销售数据、考勤数据、财务数据等。
6058
2020-08-07 18:19:53
学习大数据必须掌握哪些核心技术?
大数据技术的体系庞大且复杂,每年都会涌现出大量新的技术,目前大数据行业所涉及到的核心技术主要有:数据采集、数据存储、数据清洗、数据查询分析和数据可视化。
3406
2021-06-16 15:52:25