在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
2022年与数据相关的热门岗位有哪些?随着更多形式的数据被发现,处理、收集、存储和分析数据的需求也在不断发展。“商业智能”一词越来越流行,对新兴软件以及用于分析商业和运营绩效的系统的需求迅速增加因此衍生了很多与数据分析有关的岗位,今天我们来看看。
1、数据科学家
数据科学家需要能够应用数学、统计学和科学方法。使用多种工具和技术来清理和准备数据;进行预测分析和人工智能;并解释如何利用这些结果来为商业问题提供数据驱动的解决方案。数据科学家需要的技能比数据分析师多得多。
2、数据分析师
数据分析师收集、处理和执行统计数据分析,为组织得出有意义的结论。数据分析师将大型数据集转化并处理成可用的形式,如报告或演示。他们还通过研究重要的模式来帮助决策过程,并从数据中收集洞察力,然后有效地传达给组织领导,以帮助商业决策。
3、数据工程师
数据工程师负责准备、处理和管理收集和存储的数据,用于分析或操作用途。像传统的工程师一样,数据工程师建立和维护数据 "管道",将数据从一个系统连接到另一个系统,使数据科学家能够获得信息。正因为如此,数据工程师被要求了解数据科学中使用的几种编程语言,如Python、R和SQL。
4、数据架构师
数据架构师主要是设计和创建数据管理系统的蓝图,然后由数据工程师建立。类似于传统的建筑师,数据架构师是 "远见者",因为他们负责可视化和设计一个组织的数据管理框架。此外,数据架构师改善现有系统的性能,确保数据库管理员和分析师能够使用这些系统。
5、商业智能(BI)开发人员
商业智能开发者是专门的工程师,他们使用软件工具将数据转化为有用的见解,以帮助商业决策。负责简化技术信息,让公司里的其他人都能轻松理解。简而言之,他们创建和运行包含他们使用商业智能工具找到的数据的报告,并将信息转化为更通俗的术语。
6、统计员
鉴于统计学是数据科学的主要基础之一,许多统计学家可以轻松地过渡到数据科学领域。统计学家主要负责数据的收集和处理。他们决定需要什么数据以及如何收集数据。此外,他们设计实验,分析和解释数据,并报告结论。
7、机器学习工程师
机器学习工程师是另一组专业工程师,他们专注于研究、构建和设计人工智能和机器学习系统,以实现预测模型的自动化。基本上开发的算法使用输入数据并利用统计模型预测输出,同时在新数据可用时不断更新输出。
数据科学如今非常流行,统计学家和数据科学家在总劳动力中所占的份额与其他职业相比很小,但随着数据科学职业道路变得越来越流行这些数字预计将在未来几年增加。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
为什么学习大数据?学习大数据的5个理由!
大数据到底有什么优势?为什么要学习大数据呢?这几年大数据可谓是如日中天,非常多的朋友转行进入大数据行业。甚至目前非常火爆的人工智能也是基于大数据实现的。因此大数据的未来前景非常好。不仅如此,下面小编为大家整理了5点关于学习大数据的理由。
16070
2019-06-03 17:04:06
R语言零基础入门学什么?
R语言零基础入门学习,R语言是通过编程来进行数据分析和作图的工具,统计分析和数据分析,是进入数据分析行业或领域的必备编程语言。重点学习使用R语言进行数据处理的基本思路和方法。
5909
2020-01-07 16:14:17
分布式系统学习笔记
分布式系统其实就是为了处理更多数据而存在的。对于大数据学习者来讲,分布式系统入门还是很容易的。本文为大家总结整理了一篇关于分布式系统的学习笔记,主要内容有分布式系统的定义、常用分布式方案以及分布式和集群的对比,下面一起来看看吧~
5143
2020-06-09 11:12:49
大数据工程师、数据挖掘师和数据分析师有啥区别
随着互联网技术的不断提升,数据已经成为各大企业新的战场,而对于从业者来说,如果你对数据科学领域的工作感兴趣的话,肯定首先要了解一下数据科学领域都有哪些岗位。从岗位性质和主要工作内容不同我们可以把数据科学的岗位大概分为四类:数据产品经理、大数据工程师、数据挖掘师、数据分析师。数据产品经理显而易见就是精通并擅长数据产品设计的PM。这里我们具体了解一下大数据工程师、数据挖掘师和数据分析师有什么区别。
5606
2020-09-14 16:13:27
转大数据技术开发要学哪些知识点?高效的大数据学习路线推荐
转大数据技术开发要学哪些知识点?高效的大数据学习路线推荐,以往的数据开发需要一定的Java基础和工作经验,门槛高,入门难。如果零基础入门数据开发行业的小伙伴从Python语言入手。Python语言简单易懂,适合零基础入门,在编程语言排名上升最快,能完成数据挖掘。
3193
2022-04-15 11:20:22