在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
大数据之Spark框架中RDD和DataFrame的区别是什么?RDD(提供了一种高度受限的共享内存模型;DataFrame是一种分布式的数据集,并且以列的方式组合的。在spark中RDD、DataFrame是最常用的数据类型,在使用的过程中你知道两者的区别和各自的优势吗?关于如何具体的应用我们今天就好好的分析一下。
一、RDD、DataFrame分别是什么?
1、什么是RDD?
RDD(Resilient Distributed Datasets)提供了一种高度受限的共享内存模型。即RDD是只读的记录分区的集合,只能通过在其他RDD执行确定的转换操作(如map、join和group by)而创建,然而这些限制使得实现容错的开销很低。RDD仍然足以表示很多类型的计算,包括MapReduce和专用的迭代编程模型(如Pregel)等。
2、什么是DataFrame?
DataFrame是一种分布式的数据集,并且以列的方式组合的。类似于关系型数据库中的表。可以说是一个具有良好优化技术的关系表。DataFrame背后的思想是允许处理大量结构化数据。提供了一些抽象的操作,如select、filter、aggregation、plot。DataFrame包含带schema的行。schema是数据结构的说明。相当于具有schema的RDD。
二、RDD、DataFrame有什么特性?
在Apache Spark 里面DF 优于RDD,但也包含了RDD的特性。RDD和DataFrame的共同特征是不可性、内存运行、弹性、分布式计算能力。
它允许用户将结构强加到分布式数据集合上。因此提供了更高层次的抽象。我们可以从不同的数据源构建DataFrame。例如结构化数据文件、Hive中的表、外部数据库或现有的RDDs。DataFrame的应用程序编程接口(api)可以在各种语言中使用,包括Python、Scala、Java和R。
1、RDD五大特性:
1.(必须的)可分区的: 每一个分区对应就是一个Task线程。
2.(必须的)计算函数(对每个分区进行计算操作)。
3.(必须的)存在依赖关系。
4.(可选的)对于key-value数据存在分区计算函数。
5.(可选的)移动数据不如移动计算(将计算程序运行在离数据越近越好)。
2、DataFrame特性:
1.支持从KB到PB级的数据量
2.支持多种数据格式和多种存储系统
3.通过Catalyst优化器进行先进的优化生成代码
4.通过Spark无缝集成主流大数据工具与基础设施
5.API支持Python、Java、Scala和R语言
三、RDD与DataFrame的区别
RDD是弹性分布式数据集,数据集的概念比较强一点。容器可以装任意类型的可序列化元素(支持泛型)RDD的缺点是无从知道每个元素的【内部字段】信息。意思是下图不知道Person对象的姓名、年龄等。
DataFrame也是弹性分布式数据集,但是本质上是一个分布式数据表,因此称为分布式表更准确。DataFrame每个元素不是泛型对象,而是Row对象。
DataFrame的缺点是Spark SQL DataFrame API 不支持编译时类型安全,因此,如果结构未知,则不能操作数据;同时,一旦将域对象转换为Data frame ,则域对象不能重构。
DataFrame=RDD-【泛型】+schema+方便的SQL操作+【catalyst】优化
DataFrame本质上是一个【分布式数据表】
DataFrame优于RDD,因为它提供了内存管理和优化的执行计划。总结为以下两点:
a.自定义内存管理:当数据以二进制格式存储在堆外内存时,会节省大量内存。除此之外,没有垃圾回收(GC)开销。还避免了昂贵的Java序列化。因为数据是以二进制格式存储的,并且内存的schema是已知的。
b.优化执行计划:这也称为查询优化器。可以为查询的执行创建一个优化的执行计划。优化执行计划完成后最终将在RDD上运行执行。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
为什么大数据和云计算备受关注,大数据与云计算的关系
互联网技术不断突破与革新,大数据和云计算的概念现在已经成为互联网的热门词汇。为什么大数据和云计算这样备受关注呢?他们之间有什么关系?相信很多小伙伴也存在这样的疑问。
7750
2019-06-12 17:36:02
5分钟掌握Hadoop环境搭建流程
Hadoop是大数据技术的基础,它在大数据技术体系中的地位是非常重要的。目前Hadoop是主流的分布式系统基础架构之一,用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。所以对于Hadoop基础知识的掌握的扎实程度,会决定你在大数据技术道路上走多远。首先我们来学习一下Hadoop环境搭建流程吧。
7405
2019-08-14 10:19:35
大数据培训时间要多久?零基础多久能学会?
大数据近年来非常火爆,连带着大数据人才也十分紧缺。学习大数据,不管是发展前景还是就业前景都非常乐观,这促使很多人想加入到大数据的大军中。想要学习大数据,大数据培训不失为一个比较好的选择,但是大数据培训时间要多久?零基础多久能学会?其实主要是依据学员基础决定的。
9182
2019-07-09 18:21:06
大数据的分析软件工具有哪些?都有什么用?
大数据的分析软件工具有哪些?都有什么用?总的来说,大数据有各种各样的分析软件工具,本文要跟大家介绍的是在一些领域被高频率使用,且不可缺少的大数据分析利器,即Excel、SPSS、SAS和stata。正是有了这些软件工具的存在,大数据的分析工作才能更加有效率。
6691
2019-10-16 16:50:27
Hadoop HDFS分布式文件系统原理及应用介绍
HDFS有着高容错性特点,且设计用来部署在低廉的硬件上,提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。HDFS放宽了POSIX的要求,可以实现流的形式访问文件系统中的数据。
4075
2021-04-13 16:30:33