在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
相信大数据学习者对于数据仓库与数据库并不陌生,两者都是通过数据库软件实现存放数据的地方,从这个意义上来看,它们似乎没有多大的差别。但是再深入一点分析,我们会发现无论是从数据量还是作用来讲,两者的区别都是巨大的。为了更清楚的分辨数据仓库与数据库,下面我们具体来聊聊数据仓库与数据库的区别。
1、概念不同
数据库是一种逻辑概念,用来存放数据的仓库,通过数据库软件来实现。数据库由很多表组成,表是二维的,一张表里面有很多字段。字段一字排开,对数据就一行一行的写入表中。数据库的表,在于能够用二维表现多维的关系。而数据仓库是数据库概念的升级,从数据量来说,数据仓库要比数据库更庞大德多。数据仓库主要用于数据挖掘和数据分析,辅助领导做决策。
2、本质不同
数据库与数据仓库的区别实际讲的是OLTP与OLAP的区别。操作型处理,叫联机事务处理OLTP,它是针对具体业务在数据库联机的日常操作,通常对少数记录进行查询、修改。用户较为关心操作的响应时间、数据的安全性、完整性和并发支持的用户数等问题。传统的数据库系统作为数据管理的主要手段,主要用于操作型处理。而分析型处理,叫联机分析处理OLAP一般针对某些主题的历史数据进行分析,支持管理决策。
3、作用不同
我们要明白,数据仓库与数据库虽然有所区别,但是并表代表谁就一定比谁要好,数据仓库的出现并不是要取代数据库。数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储业务数据,数据仓库存储的一般是历史数据。
4、设计不同
数据库设计是尽量避免冗余,一般针对某一业务应用进行设计,比如一张简单的User表,记录用户名、密码等简单数据即可,符合业务应用,但是不符合分析。而数据仓库在设计是有意引入冗余,依照分析需求,分析维度、分析指标进行设计。简单来说,数据库是为捕获数据而设计,数据仓库是为分析数据而设计。
5、应用场景不同
以银行业务为例。数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里可以简单地理解为用数据库记账。有所区别的是,数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要设立ATM了。
显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是只要能够提供有效的分析数据就达到目的了。
总之,数据仓库与数据库虽然都可以存放数据,但是数据仓库是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。两者既相互区别,又相辅相成,少了谁都不行!
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
大数据是什么?有什么巨大价值?
随着市场经济的不断发展以及互联网科技的快速提升,信息流通的价值也越来越大,马云曾指出我们即将进入DT的时代。因此大数据成为炙手可热的关键因素。大数据更像是矿藏,不只是因为他的量大,而更在于这些数据背后所带来的的价值以及利益。那大数据到底是什么?他的背后隐含着什么样的巨大价值呢?
7437
2019-08-09 18:04:03
如何激活conda环境?conda创建新环境步骤教程
如何激活conda环境?针对这个问题,本教程将手把手按照创建、激活、查看活跃的环境三个步骤教大家conda创建新环境。
27919
2019-08-07 15:38:03
大数据专业学习难度大吗?需要学习什么技术?
众所周知,大数据专业是目前互联网行业中高薪岗位之一。然而看到高薪的机会,大部分同学立刻行动投入大数据专业的学习中,也有一部分同学发表自己的疑问:大数据专业这样高薪是否学习难度非常大?如果从事大数据专业工作,需要学习什么技术呢?
13028
2019-09-02 19:04:37
大数据技术是什么专业?前景如何
大数据技术是什么专业?大数据浪潮下,大数据技术是信息领域的革命,更是在全球领域内加速企业创新,社会变革的技术。大数据能给企业创造商业价值。使用大数据技术解决企业难题难题,灵活、快速、高效地响应瞬息万变的市场需求。
8370
2020-07-17 17:10:55
如何利用大数据构建用户画像?
大数据时代,不仅普通用户可以享受到技术带来的便利,企业也可以从数据中提取有商业价值的信息,构建出用户画像,从而对用户行为进行分析和预测。虽然用户画像不是什么新鲜的概念,但是大数据技术的出现使得用户画像更加清晰客观。下面我们一起来看看如何利用大数据构建用户画像。
5149
2020-07-23 12:12:02