• 在线客服

  • 扫描二维码
    下载博学谷APP

  • 扫描二维码
    关注博学谷微信公众号

  • 意见反馈

原创 人工智能要学习哪些数学知识?

发布时间:2020-06-04 14:43:10 浏览 9795 来源:博学谷 作者:照照

    近些年,随着人工智能的又一次崛起,越来越多的人选择加入人工智能的学习行列。在学习人工智能的时候,我们首先需要学习和掌握一定的数学知识。可能会有人问了,人工智能要学习哪些数学知识呢?大致来讲就是三大核心知识,即高等数学基础、线性代数以及概率与统计。下面我们一起来看看具体的学习内容~

     

    人工智能数学知识

     

    核心知识一:高等数学基础

     

    这一部分需要掌握的数学知识点有函数、极限、无穷、导数、梯度。此外微积分也是学习的一大重点,包括微积分基本想法、解释、定积分等等,总之,如果你想理解神经网络的训练过程,离不开多元微分和优化方法。同时,泰勒公式与拉格朗日也是需要重点学习的内容之一。在探寻数据空间极值的过程中,如果没有微分理论和计算方法作为支撑,任何漂亮的模型都无法落地。因此,夯实多元微分的基本概念,掌握最优化的实现方法,是通向最终解决方案的必经之路。

     

    核心知识二:线性代数

     

    这一部分的主要知识点包括了矩阵、矩阵变换/分解、特征值、随机变量、特征向量、线性核函数、多项式核函数、高斯核函数、熵、激活函数等等。只有学会了灵活地对数据进行各种变换,才能直观清晰地挖掘出数据的主要特征和不同维度的信息。

     

    核心知识三:概率与统计

     

    想通过一个数据样本集推测出这类对象的总体特征,统计学中的估计理论和大数定理的思想必须建立。因此概率与统计这部分要学的数学知识包括随机变量、正太/二项式/泊松/均匀/卡方/beta分布、核函数、回归分析、假设检验、相关分析、方差分析、聚类分析、叶贝斯分析等等。我们可以通过概率与统计分析发现规律、推测未知,而这正是人工智能的核心技术机器学习的目标。学完了这部分的数学知识,你会发现机器学习中的思想方法和核心算法大多都构筑在统计思维方法之上。

     

    因此,如果你有意向学习人工智能,必要的数学基础是少不了的。而想要掌握以上的数学知识,其实不需要死记每一个公式,只要从理解为出发点学习,零基础学员也可轻松学习高等数学、线性代数、概率论、统计学等核心数学知识。博学谷推出的人工智能数学基础在线课程,结合了大量的案例练习和实战分析,带领大家深入理解相关数学知识,并了解其在人工智能科学领域中的实际应用。相信一定能够帮助大家全面扫除AI职业道路中的数学障碍,为后续的深入学习人工智能奠定坚实的基础~

    申请免费试学名额    

在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!

上一篇: 如何提高人工智能开发效率? 下一篇: 机器人工程专业学什么?在哪里学?

相关推荐 更多

热门文章

  • 前端是什么
  • 前端开发的工作职责
  • 前端开发需要会什么?先掌握这三大核心关键技术
  • 前端开发的工作方向有哪些?
  • 简历加分-4步写出HR想要的简历
  • 程序员如何突击面试?两大招带你拿下面试官
  • 程序员面试技巧
  • 架构师的厉害之处竟然是这……
  • 架构师书籍推荐
  • 懂了这些,才能成为架构师
  • 查看更多

扫描二维码,了解更多信息

博学谷二维码