在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
众所周知,数据分析已然成为我们生活和工作中必不可缺的一部分。我们常常在当下听到的数据分析被频繁的提及,但是你真的了解数据分析的意思吗?究竟什么是数据分析呢?简单来讲,数据分析离不开数据,计量和记录一起促成了数据的诞生。下面我们一起来看看数据分析的概念理解。
1、数据分析的概念
要理解数据分析的含义,首先我们应该从官方定义入手。数据分析是指,用适当的统计分析方法,对收集来的数据进行分析,将它们加以汇总和理解消化,以求最大化地开发数据的功能以便于发挥数据的作用。它的的目的是把隐藏在一大批看似杂乱无章的数据背后的信息,集中和提炼出来,总结出所研究对象的内在规律。因此,数据分析应该有至少有两个步骤,一是汇总大量的数据,二是找出这些数据的内在联系。
商业领域中,数据分析能够给帮助企业进行判断和决策,以便采取相应的策略与行动。例如,企业高层希望通过市场分析和研究,把握当前产品的市场动向,从而指定合理的产品研发和销售计划,这就必须依赖数据分析才能完成。生活中最著名的例子便是天气专家通过对气象数据进行分析,并且制作出天气预报,根据预报,我们会做出相应的策略,是带伞还是加件衣服。
2、数据分析的商业作用
在商业领域中,数据分析的目的是把隐藏在数据背后的信息集中和提炼出来,总结出所研究对象的内在规律,帮助管理者进行有效的判断和决策。数据分析在企业日常经营分析中主要有三大作用:
(1)现状分析
简单来说就是告诉你当前的状况。具体体现在,第一,告诉你企业现阶段的整体运营情况,通过各个指标的完成情况来衡量企业的运营状态,以说明企业整天运营是好了还是坏了,好的程度如何,坏的程度又到哪里。第二,告诉你企业各项业务的构成,让你了解企业各项业务的发展以及变动情况,对企业运营有更深入的了解。
(2)原因分析
简单来说就是告诉你某一现状为什么发生。经过现状分析,我们对企业的运营情况有了基本了解,但不知道运营情况具体好在哪里,差在哪里,是什么原因引起的。这时就需要开展原因分析,以进一步确定业务变动的具体原因。例如2018年2月运营收入下降5%,是什么原因导致的呢,是各项业务收入都出现下降,还是个别业务收入下降引起的,是各个地区业务收入都出现下降,还是个别地区业务收入下降引起的。这就需要我们开展原因分析,进一步确定收入下降的具体原因,对运营策略做出调整与优化。
(3)预测分析
简单来说就是告诉你将来会发生什么。在了解企业运营现状后,有时还需要对企业未来发展趋势做出预测,为制订企业运营目标及策略提供有效的参考与决策依据,以保证企业的可持续健康发展。预测分析一般通过专题分析来完成,通常在制订企业季度、年度等计划时进行,其开展的频率没有现状分析及原因分析高。
什么是数据分析?想必大家看到这里,对数据分析的概念和商业作用都有了一定的理解。其实数据分析也没有大家想象中那么复杂,就算是普通的运营岗位,有时候也会用到数据分析。如果你对数据分析感到好奇,不妨现在就来博学谷体验数据分析的相关课程。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
博学谷线上零基础大数据培训班课程大纲内容学什么?
零基础大数据培训课程分为十个阶段主要的学习内容:Java基础、JavaWeb、主流框架、流行框架、大数据基础增强、大数据Hadoop离线分布式系统、就业课(2.0)-网站点击流项目、大数据Storm实时计算系统、大数据Spark内存计算系统、大数据Flink实时计算系统、机器学习(拓展课程)等内容
8618
2019-06-06 13:33:30
数据挖掘的特点有哪些?对企业的意义
数据挖掘的特点有哪些?数据挖掘基于大量数据、非平凡性、隐含性、新奇性、价值性五个特点,数据挖掘是要发现深藏在数据内部的知识,而不是那些直接浮现在数据表面的信息,挖掘结果必须能给企业带来直接的或间接的效益。
8586
2020-04-08 15:42:34
Hadoop入门基础知识总结
大数据时代的浪潮袭来,Hadoop作为一种用来处理海量数据分析的工具,是每一个大数据开发者必须要学习和掌握的利器。本文总结了Hadoop入门基础知识,主要包括了Hadoop概述、Hadoop的发展历程和Hadoop的特性。下面一起来看看吧!
5346
2020-06-18 10:14:31
Pandas如何分块处理大文件?
在处理快手的用户数据时,碰到600M的txt文本,用sublime打开蹦了,用pandas.read_table()去读竟然花了小2分钟,打开有3千万行数据。仅仅是打开,要处理的话不知得多费劲。解决方法:读取文件的函数有两个参数:chunksize、iterator。原理分多次不一次性把文件数据读入内存中。
5182
2020-08-14 16:16:47
大数据工程师、数据挖掘师和数据分析师有啥区别
随着互联网技术的不断提升,数据已经成为各大企业新的战场,而对于从业者来说,如果你对数据科学领域的工作感兴趣的话,肯定首先要了解一下数据科学领域都有哪些岗位。从岗位性质和主要工作内容不同我们可以把数据科学的岗位大概分为四类:数据产品经理、大数据工程师、数据挖掘师、数据分析师。数据产品经理显而易见就是精通并擅长数据产品设计的PM。这里我们具体了解一下大数据工程师、数据挖掘师和数据分析师有什么区别。
5134
2020-09-14 16:13:27