在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
大数据Apache Hadoop YARN 工作原理介绍,Apache Hadoop YARN是一种新的 Hadoop 资源管理器,通用资源管理系统可为上层应用提供统一的资源管理和调度,引入为集群在利用率、资源统一管理和数据共享等方面具有很强的优势。
Apache Hadoop YARN 工作原理:
一、Apache Hadoop YARN基本构成
Master/Slave结构,1 个ResourceManager(RM)对应多个 NodeManager(NM);YARN 由 Client、ResourceManager、NodeManager、ApplicationMaster (AM)组成;Client 向 RM 提交任务、杀死任务等;AM由对应的应用程序完成;每个应用程序对应一个 AM,AM向RM申请资源用于在NM上启动相应的 Task;NM 向 RM通过心跳信息:汇报 NM健康状况、任务执行状况、领取任务等;
大数据系列之Hadoop的资源管理模块YARN
1、RM:整个集群只有一个,负责集群资源的统一管理和调度:
处理来自客户端的请求(启动/杀死应用程序);启动/监控 AM;一旦某个 AM 挂了之后,RM 将会在另外一个节点上启动该 AM;监控 NM,接收 NM的心跳汇报信息并分配任务到 NM去执行;一旦某个 NM挂了,标志下该 NM 上的任务,来告诉对应的 AM 如何处理;负责整个集群的资源分配和调度;
2、NM:整个集群中有多个,负责单节点资源管理和使用
周期性向 RM汇报本节点上的资源使用情况和各个 Container 的运行状;接收并处理来自 RM 的 Container 启动/停止的各种命令;处理来自 AM的命令;负责单个节点上的资源管理和任务调度;
3、AM:每个应用一个,负责应用程序的管理
数据切分;为应用程序/作业向 RM 申请资源(Container),并分配给内部任务;与 NM通信以启动/停止任务;任务监控和容错(在任务执行失败时重新为该任务申请资源以重启任务);处理 RM发过来的命令:杀死 Container、让 NM重启等;
4、Container:对任务运行环境的抽象
任务运行资源(节点、内存、CPU);任务启动命令;任务运行环境;任务是运行在Container中,一个Container中既可以运行AM也可以运行具体的Map/Reduce/MPI/SparkTask;
二、YARN工作原理
用户向YARN 中提交应用程序/作业,其中包括 ApplicaitonMaster 程序、启动ApplicationMaster 的命令、用户程序等;ResourceManager 为作业分配第一个 Container,并与对应的 NodeManager 通信,要求它在这个 Containter 中启动该作业的 ApplicationMaster;ApplicationMaster 首 先 向 ResourceManager 注 册 , 这 样 用 户 可 以 直 接 通 过ResourceManager 查询作业的运行状态;然后它将为各个任务申请资源并监控任务的运行状态,直到运行结束。即重复步骤 4-7;ApplicationMaster 采用轮询的方式通过 RPC 请求向 ResourceManager 申请和领取资源;
一旦 ApplicationMaster 申请到资源后,便与对应的 NodeManager 通信,要求它启动任务;NodeManager 启动任务;各个任务通过 RPC 协议向 ApplicationMaster 汇报自己的状态和进度,以让ApplicaitonMaster 随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务;在作业运行过程中,用户可随时通过 RPC 向 ApplicationMaster 查询作业当前运行状态;作业完成后,ApplicationMaster 向 ResourceManager 注销并关闭自己;
三、YARN容错性
ResourceMananger基于 ZooKeeper 实现 HA 避免单点故障;NodeManager执行失败后,ResourceManager 将失败任务告诉对应的 ApplicationMaster;由 ApplicationMaster 决定如何处理失败的任务;ApplicationMaster执行失败后,由 ResourceManager 负责重启;ApplicationMaster 需处理内部任务的容错问题;RMAppMaster 会保存已经运行完成的 Task,重启后无需重新运行。
四、YARN调度框架
1、双层调度框架
ResourceManager 将资源分配给 ApplicationMaster;ApplicationMaster 将资源进一步分配给各个 TASK;
2、基于资源预留的调度策略
资源不够时,会为 Task 预留,直到资源充足;描述:当一个 Task 需要 10G 资源时,各个节点都不足 10G,那么就选择一个节点,但是某个 NodeManager上只有 2G, 那么就在这个 NodeManager上预留, 当这个 NodeManager上释放其他资源后,会将资源预留给 10G 的作业,直到攒够 10G 时,启动 Task;缺点:资源利用率不高,要先攒着,等到 10G 才利用,造成集群的资源利用率低;
与"all or nothing"策略不同描述:当一个作业需要 10G 资源时,节点都不足 10G慢慢等,等到某个节点上有 10G 空闲资源时再运行,很可能会导致该 Task停工。
Apache Hadoop YARN 优势总结:hadoop2将资源管理功能从MapReduce框架中独立出来,也就是现在的YARN模块。大大减小了 JobTracker的资源消耗,对于资源的表示以内存为单位,比之前以剩余slot 数目更合理;在新的 Yarn 中,ApplicationMaster 是一个可变更的部分,用户可以对不同的编程模型写自己的 AppMst。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
参加大数据培训能找哪些工作?需要具备什么技能?
马云说我们进入了date时代。数据经代替大部分经验成为企业发展的指导准则。对于我们个体而言,首先我们的日常行为以及记录都是大数据的一部分。与此同时面对大数据的发展我们也有了更多的职业机会。因此很多小伙伴纷纷进入大数据培训学校,深化学习大数据技术。那现在参加大数据培训能找哪些工作?分别需要什么技能呢?
8155
2019-07-09 17:03:42
大数据HIve数据仓库应用案例讲解分析
如今,大数据的大浪已经把我们每个人都卷入其中,随着大数据技术一起引起大众注意的还有HIve数据仓库。作为大数据分析的核心工具之一,它一直发挥着为企业提供决策支持的重要作用。因此掌握Hive是入门大数据学习的关键之一,下面我们就一起来看看HIve数据仓库应用案例讲解。
7096
2019-09-20 16:55:35
大数据未来的发展方向和趋势预测分析
在大数据时代,任何一个细微的数据都能被挖掘和了解,可以说大数据已经渗透进了现代生活的每个的角落,影响并改变着我们日常生活和工作的方方面面。在未来,大数据还会又怎样的发展呢?本文就来为大家预测分析一下大数据未来的发展方向和趋势。
8651
2019-09-27 11:39:15
学习大数据必须掌握哪些核心技术?
大数据技术的体系庞大且复杂,每年都会涌现出大量新的技术,目前大数据行业所涉及到的核心技术主要有:数据采集、数据存储、数据清洗、数据查询分析和数据可视化。
3634
2021-06-16 15:52:25
传智教育博学谷狂野大数据课程再传喜讯,学员均薪超2万
近日,传智教育旗下博学谷IT在线教育公开了一组大数据学科的就业薪资数据,即全部学员平均就业薪资为 21775元,平均涨薪额度为8229元,涨幅64.00%;其中,一线城市平均就业薪资24274元,一线城市平均涨薪额度为10080元,涨幅76.91%。
2618
2022-09-29 16:42:09