在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
云计算和人工智能的两大误区是什么?云计算和人工智能两大误区:云支出正在使数据中心支出大打折扣;人工智能过度炒作在很大程度上使企业购买者失败。过早采用人工智能可能会很有趣,但同时存在着诸多问题。
云计算和人工智能误区一:企业的数据中心注定不复存在
到2025年将有80%的企业关闭其数据中心。但是专业人士给出了他的思考的一些的理由:“随着互连服务、云计算提供商、物联网、边缘服务和SaaS产品的不断增加,留在传统数据中心拓扑结构中的原理将有优势有限。”
业务需要灵活性,但IT需要控制。按企业的条件使用IT。数据引力,尽管这种引力作用了一段时间,但现在产生了相反的效果:越来越多的数据诞生于云中,并且将会在那里存储、处理和分析。
在云计算增长的同时,数据中心支出并未下降。尽管有预测说云计算将迅速取代数据中心,但这还是可以做到的。大多数人认为,在云计算上花费1美元,将是在传统数据中心上花费的1美元。事实并非如此。”
云计算和人工智能误区误区二:人工智能让企业失败
高管们在人工智能方面做大做强的雄心超出了企业的交付能力:“如果没有基础技术的需求,这些项目注定会失败。需要管理人员来引导每个人进行变更,但有时似乎只是为了变更。”问题不是因为“人工智能失败”,而是因为人们没有适当地为自己准备什么期望人工智能如何做。
进入这个行业的数据科学家们准备不足,但被过度炒作,他们已经准备好了去寻找成功之路。不幸的是,他们可能试图用错误的技术来解决错误的问题,她指出:“现实情况是,‘数据科学’从来没有像现在这样重视机器学习,而是重视数据的清理、成型和移动。”
人工智能可能比想像的更基本。它还可能由于与该技术无关的原因而失败。也许,也许这根本不是失败。至少没有其他IT项目如此。与其他任何IT项目相比,人工智能项目失败的可能性不会或多或少。
项目很少会失败,因为技术无法实现预期的目标。项目失败是因为买方希望技术无法交付的东西,或者组织在实施方面大失所望。人工智能项目与企业资源计划(ERP)项目或任何其他IT项目相同。它们根据组织的项目管理流程而成功或失败。
我们要对云计算和人工智能两个误区有清晰的认识,云计算和人工智能的发展必定会带我们进入一个全新的时代。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
数据分析应用在哪些领域?都起到了什么作用?
随着大数据的发展,数据分析早已渗透各行业各业,尤其是互联网、电商和金融三大行业。同时数据分析在电信、旅游、医疗健康等等领域,也有比较多的应用。下面我们来看看在这些领域数据分析究竟起了什么作用。
12019
2019-09-28 09:54:27
2020年云计算大数据课程学习大纲
本文将为大家分享2020年云计算大数据课程的一份学习大纲,本课程从大数据基础增强开始, 内容精准聚焦大数据开发过程中必备的离线数据分析、实时数据分析和内存数据计算等重要内容,涵盖了大数据体系中几乎所有的核心技术。如果大家对云计算大数据感兴趣的话,不妨来看看,对自己的学习规划也是有一定帮助的。
5488
2020-04-28 17:34:28
分布式系统学习笔记
分布式系统其实就是为了处理更多数据而存在的。对于大数据学习者来讲,分布式系统入门还是很容易的。本文为大家总结整理了一篇关于分布式系统的学习笔记,主要内容有分布式系统的定义、常用分布式方案以及分布式和集群的对比,下面一起来看看吧~
4917
2020-06-09 11:12:49
大数据开发工程师需要学习哪些知识点?
大数据开发工程师需要学习哪些知识点?大数据程序员需要有坚实的大数据技术理论基础、了解数据平台、掌握数据存储 HDFS、、日志解析及计算 MR、数据获取和预处理 Flume、结构化查询 Hive、数据获取和预处理 Sqoop、大数据调度框架Azkaban、Scala编程基础等相关知识。
6117
2020-09-03 14:13:34
学大数据开发要掌握的基础知识有哪些?
大数据专业包含课程较多难度大对学习者的要求较高,从事大数据相关的岗位有平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘,不同的从业方向需要掌握的技能也不尽相同。
3425
2021-01-15 11:06:11