在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
现在是大数据的时代,也是数据爆炸的时代,如何处理大数据的存储成为了摆在人们面前的难题,因此分布式文件存储系统应用而生。同时分布式文件存储系统在大数据面试中,也是一个常常可以见到的考点之一。本文为大家梳理了相关的大数据知识点,感兴趣的小伙伴可以看一看。
1、架构
如上图所示,HDFS也是按照 Master 和 Slave 的结构。分 NameNode、SecondaryNameNode、DataNode 这几个角色。
NameNode:是 Master 节点,是大领导。管理数据块映射;处理客户端的读写请求;配置副本策略;管理 HDFS 的名称空间;
SecondaryNameNode:是一个小弟,分担大哥 namenode 的一部分工作量;是 NameNode 的冷备份;合并 fsimage 和 fsedits 然后再发给 namenode。
DataNode:Slave 节点,奴隶,干活的。负责存储 client 发来的数据块 block;执行数据块的读写操作。
热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。
冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。
fsimage:元数据镜像文件(文件系统的目录树。)
edits:元数据的操作日志(针对文件系统做的修改操作记录)namenode 内存中存储的是=fsimage+edits。
SecondaryNameNode负责定时默认1小时,从namenode上,获取 fsimage 和 edits 来进行合并, 然后再发送给 namenode 。减少namenode 的工作量。
2、原理
(1)工作机制
NameNode 负责管理整个文件系统元数据;DataNode 负责管理具体文件数据块存储;Secondary NameNode 协助 NameNod进行元数据的备份。HDFS 的内部工作机制对客户端保持透明,客户端请求访问 HDFS 都是通过向 NameNode 申请来进行。
(2)读写流程
* HDFS 写数据流程
a、 client 发起文件上传请求,通过 RPC 与 NameNode 建立通讯,NameNode 检查目标文件是否已存在,父目录是否存在,返回是否可以上传;
b、 client 请求第一个 block 该传输到哪些 DataNode 服务器上;
c、NameNode 根据配置文件中指定的备份数量及机架感知原理进行文件分配,返回可用的 DataNode 的地址如:A,B,C;注: Hadoop 在设计时考虑到数据的安全与高效,数据文件默认在 HDFS 上存放三份, 存储策略 为本地一份,同机架内其它某一节点上一份,不同机架的某一节点上一份。
d、client 请求 3 台 DataNode 中的一台 A 上传数据(本质上是一个 RPC调用,建立 pipeline), A 收到请求会继续调用 B,然后 B 调用 C,将整个pipeline 建立完成,后逐级返回 client;
e、 client 开始往 A 上传第一个 block(先从磁盘读取数据放到一个本地内存缓存),以 packet 为单位(默认 64K),A 收到一个 packet 就会传给 B,B 传给 C;A 每传一个 packet 会放入一个应答队列等待应答。
f、数据被分割成一个个 packet 数据包在 pipeline 上依次传输,在 pipeline 反方向上,逐个发送 ack(命令正确应答),最终由 pipeline 中第一个 DataNode 节点 A 将 pipeline ack 发送给 client;
g、 当一个 block 传输完成之后,client 再次请求 NameNode 上传第二个block 到服务器。
*HDFS 读数据流程
a、 Client 向 NameNode 发起 RPC 请求,来确定请求文件 block 所在的位置;
b、 NameNode 会视情况返回文件的部分或者全部 block 列表,对于每个block,NameNode 都会返回含有该 block 副本的 DataNode 地址;
c、 这些返回的 DN 地址,会按照集群拓扑结构得出 DataNode 与客户端的距离,然后进行排序,排序两个规则:网络拓扑结构中距离 Client 近的排靠前;心跳机制中超时汇报的 DN 状态为 STALE,这样的排靠后;
d、 Client 选取排序靠前的 DataNode 来读取 block,如果客户端本身就是DataNode,那么将从本地直接获取数据;
e、 底层上本质是建立 Socket Stream(FSDataInputStream),重复的调用父类 DataInputStream 的 read 方法,直到这个块上的数据读取完毕;
f、 当读完列表的 block 后,若文件读取还没有结束,客户端会继续向NameNode 获取下一批的 block 列表;
g、 读取完一个 block 都会进行 checksum 验证,如果读取 DataNode 时出现错误,客户端会通知 NameNode,然后再从下一个拥有该 block 副本的DataNode 继续读。
h、 read 方法是并行的读取 block 信息,不是一块一块的读取;NameNode 只是返回 Client 请求包含块的DataNode 地址,并不是返回请求块的数据;
i、 最终读取来所有的
3、API
(1)shell 定时采集数据至 HDFS
* 技术分析
HDFS SHELL:
hadoop fs -put // 满足上传 文件,不能满足定时、周期性传入。
Linux crontab: crontab -e
0 0 * * * /shell/ uploadFile2Hdfs.sh //每天凌晨 12:00 执行一次
* 实现流程
一般日志文件生成的逻辑由业务系统决定,比如每小时滚动一次,或者一定大小滚动一次,避免单个日志文件过大不方便操作。比如滚动后的文件命名为 access.log.x,其中 x 为数字。正在进行写的日志文件叫做 access.log。这样的话,如果日志文件后缀是 1\2\3 等数字,则该文件满足需求可以上传,就把该文件移动到准备上传的工作区间目录。工作区间有文件之后,可以使用 hadoop put 命令将文件上传。
以上就是大数据笔记之分布式文件存储系统的知识点梳理,大家有任何不懂的地方,都可以咨询博学谷的在线老师。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
计算机大数据应用技术就业前景怎么样?
计算机大数据应用技术就业前景怎么样?作为目前最为广泛和热门的新兴技术,计算机大数据应用技术的意义不在于存储海量的的数据信息,而在于对这些数据进行专业化处理,从而更好地辅助工作中的各项决策。因此,掌握了计算机大数据应用技术,其就业前景自然广阔明亮无比。关于大数据的更多就业方向选择,我们可以看看以下的具体分析。
12728
2020-01-14 15:33:07
数据中台对企业有哪些意义和作用?
随着数据化浪潮席卷全球,数据中台也由此应运而生。众所周知,数据中台的主要作用在于把数据进行统一标准和口径之后,再进行储存和加工,从而使企业可以提供更高效的服务。简单来讲,数据中台是以节省企业成本,实现精细化运营为目标。那么数据中台对企业到底有哪些具体意义和作用呢?下面我们来具体看一下。
7313
2020-02-10 22:29:52
Flink从入门到实践课程介绍
Flink是解放程序员的一款开源大数据计算引擎,本文将为大家介绍Flink从入门到实践的课程详情,主要包括课程的学习内容、亮点特色和学习收获,对Flink感兴趣或者有学习需要的小伙伴可以看一看。
4447
2020-04-21 18:22:10
HDFS基本操作学习总结
本文为大家总结了关于HDFS基本操作的学习笔记,具体内容包括Shell命令行客户端、Shell命令选项和Shell常用命令介绍。全文干货建议大家收藏起来,在学习和工作中慢慢进行记忆和查询~
6173
2020-06-10 10:56:20
什么是大数据系统存储及管理?
根据数据存储和管理的内容范围,大数据存储及管理技术需要重点研究如何解决大数据的可存储、可表示、可处理、可靠性及有效传输等。需要解决:海量文件的存储与管理,海量小文件的传输、索引和管理,海量大文件的分块与存储,系统可扩展性与可靠性的问题。
6050
2020-12-01 14:32:47