在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
提到数据挖掘,大家都知道这是指通过一些专业的算法,从海量的的数据中找出需要信息的过程。可以看出,数据挖掘的算法是搜索信息的关键。一般比较经典的算法有十种,那么数据挖掘的十大算法有哪些呢?下面就来讲讲那些对数据挖掘影响重大的十大算法。
一、C4.5
C4.5 是决策树算法,其中它创造性地在决策树构造过程中就进行了剪枝,并且可以处理连续的属性,也能对不完整的数据进行处理。可以说是决策树分类中具有里程碑意义的算法。
二、朴素贝叶斯
朴素贝叶斯模型是基于概率论的原理,它的思想是对于给出的未知物体想要进行分类,就需要求解在这个未知物体出现的条件下各个类别出现的概率,哪个最大,就认为这个未知物体属于哪个分类。
三、SVM
SVM (支持向量机),是一类按监督学习方式对数据进行二元分类的广义线性分类器),其决策边界是对学习样本求解的最大边距超平面。
四、KNN
KNN 也叫 K 最近邻算法。所谓 K 近邻,就是每个样本都可以用它最接近的 K 个邻居来代表。如果一个样本,它的 K 个最接近的邻居都属于分类 A,那么这个样本也属于分类 A。
五、Adaboost
Adaboost 在训练中建立了一个联合的分类模型。boost 在英文中代表提升的意思,所以 Adaboost 是个构建分类器的提升算法。它可以让我们多个弱的分类器组成一个强的分类器。
六、PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
七、AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
八、kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
九、Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
十、CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。
以上就是数据挖掘的十大算法。随着大数据浪潮的袭来,数据挖掘成为数据分析必不可少的手段。对数据挖局感兴趣的小伙伴,赶紧上博学谷官网进行深入学习吧!
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
数据分析对企业经营的作用和现实意义
大数据时代的浪潮,不仅改变着每个人个人的命运,同时为企业提供了更多的机会。在日常的企业经营中,我们往往会用到数据分析,那么数据分析对企业经营到底有多大的作用?又有哪些现实意义呢?
12777
2019-08-13 17:38:12
大数据面试要注意哪些方面?大数据面试准备三大攻略
大数据面试要注意哪些方面?一般来说,求职者要做好自我介绍、面试提问和专业考题三大方面的准备。下面是小编专门为大数据求职者整理的面试攻略,希望对大家找工作有所帮助。
6789
2019-09-08 19:36:29
Redis是什么?Redis有哪些数据类型?
Redis是什么?Redis是一个高性能且免费的key-value数据库,它可以解决高并发、高扩展和大数据存储等等问题,因此Redis对大数据的作用至关重要。那么Redis有哪些数据类型呢?简单来说有string、hash、list、set、zset五种,下面小编将来详细分析一下这五种数据类型。
6647
2019-11-11 17:51:24
程序员必须掌握的大数据分析核心技术有哪些?
程序员必须掌握的大数据分析核心技术有哪些?大数据分析技术现是一种传统的技术分析模型,主要对数据进行筛选、过滤之后进行分析。随着银行业、保险业,电子商务的不断发展,非结构数据的数量越来越多,增加了大数据分析的难度,对于大数据方面的程序员要求越来越高。
5779
2020-03-05 15:19:17
数据挖掘的特点有哪些?对企业的意义
数据挖掘的特点有哪些?数据挖掘基于大量数据、非平凡性、隐含性、新奇性、价值性五个特点,数据挖掘是要发现深藏在数据内部的知识,而不是那些直接浮现在数据表面的信息,挖掘结果必须能给企业带来直接的或间接的效益。
9026
2020-04-08 15:42:34