在线客服
扫描二维码
下载博学谷APP扫描二维码
关注博学谷微信公众号
Hadoop的NN所使用的资源受所在服务的物理限制,不能满足实际生产需求。本文来谈谈大数据学习之Hadoop的联邦机制,主要内容包括:Hadoop的局限与不足、联邦的实现、主要优点、配置和操作。
一、Hadoop的局限与不足
Hadoop1.0的核心组件MR和HDFS主要有几个不足:
1、抽象层次低。对于简单的功能,编写大量的代码。
2、表达能力有限。MR把复杂分布式编程工作高度抽象到两个函数上,即Map和Reduce上,实际生产环境中有些不能只用简单的两个函数完成。
3、要管理作业间复杂的依赖关系。实际应用通常需要大量的job协作完成,job之间往往存在复杂的依赖关系。
4、迭代效率低。对于需要迭代的任务,需要反复读写HDFS文件中的数据,大大降低了迭代效率。
5、资源浪费。Reduce任务需要等待所有Map任务完成后才开始。
6、实时性差。适用于离线批处理。
二、联邦的实现
采用多台 NN 组成联邦。NN 是独立的,NN 之间不需要相互调用。NN 是联合的,同属于一个联邦,所管理的 DN 作为 block 的公共存储。block pool 的概念,每一个 namespace 都有一个 pool,datanodes 会存储集群中所有的 pool,block pool 之间的管理是独立的,一个 namespace 生成一个 blockid 时不需要跟其它 namespace 协调,一个 namenode 的失败也不会影响到 datanode对其它 namenodes 的服务。一个 namespace 和它的 block pool 作为一个管理单元,删除后,对应于datanodes 中的 pool 也会被删除。集群升级时,这个管理单元也独立升级。这里引入 clusterID 来标示集群所有节点。当一个 namenode format 之后,这个 id 生成,集群中其它 namenode 的 format 也用这个 id。
三、主要优点:
命名空间可伸缩性——联合添加命名空间水平扩展。DN 也随着 NN 的加入而得到拓展。
性能——文件系统吞吐量不是受单个Namenode 限制。添加更多的Namenode集群扩展文件系统读/写吞吐量。
隔离——隔离不同类型的程序,一定程度上控制资源的分配
四、配置:
联邦的配置是向后兼容的,允许在不改变任何配置的情况下让当前运行的单节点环境转换成联邦环境。新的配置方案确保了在集群环境中的所有节点的配置文件都是相同的。这里引入了 NameServiceID 概念,作为 namenodes 们的后缀。第一步:配置属性 dfs.nameservices,用于 datanodes 们识别 namenodes。第二步:为每个 namenode 加入这个后缀。
五、操作:
# 创建联邦,不指定 ID 会自动生成
$HADOOP_HOME/bin/hdfs namenode -format [-clusterId <cluster_id>]
# 升级 Hadoop 为集群
$HADOOP_HOME/bin/hdfs start namenode --config $HADOOP_CONF_DIR
-upgrade -clusterId <cluster_ID>
# 扩展已有联邦
$HADOOP_HOME/bin/hdfs dfsadmin -refreshNamenodes
<datanode_host_name>:<datanode_rpc_port>
# 退出联邦
$HADOOP_HOME/sbin/distribute-exclude.sh <exclude_file>
$HADOOP_HOME/sbin/refresh-namenodes.sh
什么是 CDH?
它是 Hadoop众多分支中的一种,由 Cloudera 维护,基于稳定版本的 Apache Hadoop 构建,并集成了很多补丁, 可直接用于生产环境。
CDH 的优点: 版本划分清晰
版本更新速度快
支持 Kerberos 安全认证文档清晰
支持多种安装方式(Cloudera Manager、YUM、RPM、Tarball) 什么是 CM Cloudera Manager? 是为了便于在集群中进行 Hadoop
等大数据处理相关的服务安装和监控管理的组件,对集群中主机、Hadoop、Hive、Spark等服务的安装配置管理做了极大简化。
Cloudera Manager 有四大功能:
(1)管理:对集群进行管理,如添加、删除节点等操作。
(2)监控:监控集群的健康情况,对设置的各种指标和系统运行情况进行全面监控。
(3)诊断:对集群出现的问题进行诊断,对出现的问题给出建议解决方案。
(4)集成:对 hadoop 的多组件进行整合。
以上就是Hadoop的联邦机制的全部知识点总结。大家对大数据学习如果还有更多的兴趣,可以报博学谷的在线大数据课程。
— 申请免费试学名额 —
在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果
讲师一对一辅导,在线答疑解惑,指导就业!
相关推荐 更多
零基础大数据开发学习线路
零基础大数据开发学习线路,主要的学习内容有大数据基础——java语言基础方面、HTML、CSS与JavaScript、JavaWeb和数据库、Linux&Hadoop生态体系、分布式计算框架和Spark&Strom生态体系、大数据分析 —AI(人工智能)等内容。
6732
2019-05-20 18:48:12
云计算大数据培训班学费多少钱?
云计算大数据培训就业班学费多少钱?在互联网行业,云计算大数据技术可谓是夺人眼球,对于企业来说,云计算大数据技术为企业优化产业结构,大大节约了成本。对于从业者来说,提供了更多的就业机会,同时也让大家的加薪成为现实。从而很多同学想通过技术培训就业班进入云计算大数据技术领域。现在云计算大数据培训机就业班学费多少钱?
8006
2019-12-05 15:48:33
大数据技术应用专业有哪些?主要做什么?
大数据概念持续火爆,其核心价值并非仅仅是数据量大,更重要的是在海量的数据背后所体现出来的应用价值。如果把大数据比作一种产业链的话,那么这个产业最终实现价值的关键在于,通过对数据的“加工处理”实现数据的“增值”。因此围绕大数据技术衍生出来大量的应用专业方向。都有哪些大数据技术应用专业呢?他们主要做什么工作呢?下面我们一起来看一下。
11814
2019-09-11 18:29:17
大数据测试的发展和困境分析
随着大数据技术的日益深入发展,大数据测试应运而生。可以预见,大数据测试将成为软件测试工程师的发展目标之一。可能对于许多人来讲,大数据测试还是一个十分陌生的概念。实际上,大数据测试不同于传统的软件测试,在测试类型、策略和工具上,都有很大的不同。本文将为大家仔细分析一下大数据测试的发展和困境,下面我们一起来看看!
6052
2020-03-03 23:44:15
大数据开发的前景和就业如何?该如何去学习它?
大数据开发的前景和就业如何?该如何去学习它? 从岗位招聘和投递的供求对比来看,互联网核心的技术/测试/运维仍保持着较为密集的人才需求,主要体现在企业对以人工 智能、数字孪生为代表的高技术岗位的需求,此类岗位同比保有两位数的高增长,相关从业者仍有较大的择业空间与机会。
3099
2022-07-25 11:32:15